
Scalability of DNA Sequence Database on Low-End

Cluster using Hadoop

Ade Jamal, Winangsari Pradani, Nida’ul Hasanati, Arief Supriyanto, Rahman Pujianto

Department of Informatics Engineering

University Al-Azhar Indonesia

Jakarta, Indonesia

adja@uai.ac.id

Abstract— Publicly available DNA sequence database such as

GenBank managed by National Center for Biotechnology

Information (NCBI) is very large and still grows exponentially.

The sequence data are stored in flat file format grouped in

various division based on the source taxonomy. Bacterial division

alone consists of more than 100 files has size about 6 Gigabytes in

total. Searching in 100 files using single server took time about

1500 seconds in a Quad Cores machine. An effort to speed up this

process has been worked out by uploading the bacterial sequence

data on Hadoop Distributed File System on low-end cluster.

MapReduce computation model is invoked for searching

algorithm in conjunction with Hadoop Distributed File System as

both technologies are main component of Hadoop framework.

Scalability evaluation has been performed to investigate whether

increasing number of node in the cluster will be fruitful.

Keywords—DNA; Hadoop; Distributed File System;

MapReduce

I. INTRODUCTION

The advent of next-generation DNA (Deoxyribon Nucleic
Acid) sequencing technology has created a very huge and still
increasing of sequence data that has to be stored, organized and
delivered to biomolecular scientist for further research [1]. The
European Bioinformatics Institute (EBI), which organizes a
central repository of sequence data called EMBL-bank, has
increased storage capacity from 2.5 Petabytes to 5 Petabytes in
2009 [2]. Publicly available DNA sequence database called
genbank is managed by National Center for Biotechnology
Information (NCBI), at the National Institutes of Health (NIH,
USA), which receives data through the international
collaboration with DNA Databank of Japan (DDBJ) and
European Molecular Biology Laboratory (EMBL) as well as
from the scientific community [3]. These three partners in the
collaboration called The International Nucleotide Sequence
Database Collaboration (INSDC) exchange data daily to ensure
that comprehensive data of sequence information is available

worldwide, for example NCBI make the Genbank data
available for free through FTP (ftp://ftp.ncbi.nih.gov/genbank)
[4].

The genbank database release 203 in August 2014 contains
about 652 GByte sequence data in uncompressed traditional
flat file as well as in ASN.1 format. The size of this database is
expected to grow exponentially as from 1982 to the present; the
number of bases in genbank has doubled approximately every
18 months [5] as shown in Fig. 1. The volume of data with this
size presents a great challenge in storage and communication
of data. Currently, sequence data in genbank is kept in large
flat files which are compressed using standard gzip
compression. Many researches have been done on compressing
DNA sequence individually or the entire database as worked in
[6] to circumvent the storage problem. While increasing the
compression ratio of sequence individual data or sequence
databases diminishes the storage problem, but the data
communication problem is not directly taken care.

Fig. 1. The growth of genbank database from Dec 1982 to Aug 2014

 (ftp://ftp.ncbi.nih.gov/genbank/release.notes/gb203.release.notes)

In traditional high performance computing (HPC)
applications, it is a common practice to have “high-end
processing nodes” with a large amount of shared memory and
“storages nodes” attached together by a high-capacity
interconnection device. This scaling “up” approach is not cost
effective, since the cost of such machine does not scale
linearly. Tackling large data problems asks an alternative
approach than the traditional model of computing. Instead of
scaling “up” approach, scaling “out” approach; i.e. utilizing a
large number of commodity low-end servers, is preferred for
data-intensive workload [2].

The separation of computing node and storage node creates
bottleneck in the network. As an alternative to moving around
the data, it is more efficient to move processing around to the
data; hence the processors and the storage are co-located. In
this type of computing model, one can take the benefit of data
locality by running code on the computing processor directly
attached to the block of they need. The architecture of
computer cluster which complies to this model is called
distributed file system. Over this type of cluster a so called
MapReduce programming model is usually invoked as

proposed
by Dean
and
Ghemaw
at from
Google
in [7].
They
claimed
that
Google’s implementation of MapReduce and Google File
System (GFS) [8] which run on a large cluster of commodity
machines is highly scalable.

Doug Cutting who founded a Nutch project [9]; i.e. full-
featured text indexing and searching library, faced with the
scalability issues in his project. Inspired by Google’s work in
[7, 8], he implemented the new framework and ported Nutch to
it. Using the new framework, named Hadoop, Nutch became
more scalable than any web crawler engine at that time [10]. In
2006, Doug Cutting is hired by Yahoo! to work with a
dedicated team on improving Hadoop as an open source
Apache project [11, 12].

II. HADOOP FRAMEWORK

Now a day, Hadoop is a collection of many related
subprojects of infrastructure for distributed computing. It
consists of two main components, namely Hadoop Distributed
File System (HDFS) and MapReduce distributed computation
programming framework. Using these two main cores, one can
decompose a very large data set and let computations run in
parallel close to data across many commodity servers. Other
subprojects under Hadoop, such as Pig (dataflow language and
parallel execution framework), Hbase (column oriented table
service), and Zookeper (distributed coordination service) and
Hive (data warehouse infrastructure), provide complementary
services build on the core to add higher level abstraction [11,
13].

A. Hadoop Distributed File System

HDFS is a file system that is designed for run a MapReduce
application on a cluster of commodity computers. A big data
set will be divided into smaller (say 64Mbyte) blocks/chunks
that are spread among computer nodes in the cluster via HDFS.
These chunks of data input will be read in parallel which
provide a much higher throughput. For data-intensive
processing, the number of chunks will be too large to be moved
around between nodes in the cluster. Instead of moving the
data, Hadoop lets program codes move around. This move-
code-to-data concept is more efficient with respect to
communication load because the program codes are orders of
magnitude smaller than the data chunk.

 HDFS stores file system metadata and application data
separately in different servers. While file system metadata is
stored on single dedicated server, called NameNode;
application data are distributed on a number of other servers
called DataNodes. As depicted in Fig. 2.

The NameNode server is the master of HDFS that manages
the slave DataNodes daemons to do the low-level I/O tasks.

The NameNode acts as a bookkeeper that keeps track how the
application data are split into data chunks and where those
chunks are stored. The DataNodes reside in the slave machines;
provide the block storage and data retrieval services for the
client application.

Fig. 2. HDFS Cluster consists of a NameNode and 6 DataNodes servers.

B. MapReduce: Distributed Computation Model

MapReduce is a distributed programming model which is
inspired from functional programming model. MapReduce
proceed large datasets normally in two stages, i.e. map and
reduce stage. In the first stage, the map function is applied
over all input records in the large datasets and can be
performed in parallel since each functional application happens
independently. The intermediate result of the first stage if
required could be read in aggregation way by the reduce
(folding) function. Application programmer just needs to
define these two main functions and the MapReduce
framework will execute the actual processing which
decomposes the job into a set of map tasks, shuffle-sort and a
set of reduce tasks.

Fig. 3. Simplified MapReduce process

In contrary to the more common relational tables,
MapReduce uses its basic data structure in form of key-value
pairs (k, v). This form of data structure provides the flexibility
to tackle semi structured or even unstructured data sets.

The mapper is applied to every input key-value pair (k1, v1)
spread over a number of files (or blocks) to produce a list of
intermediate key-value pairs [(k2, v2)].

 map: (k1,v1) →[(k2,v2)]

The reducer is applied to all values corresponding to the
same intermediate key (k2, [v2]) to generate a list of output key-
values [(k3,v3)].

 reduce: (k2, [v2]) →[(k3,v3)]

As in HDFS, the master-slave architecture is invoked to
control the job execution processes in the MapReduce. As
slaves, TaskTrackers run the actual computation jobs of
MapReduce and send progress report to a master, called

JobTracker. JobTracker coordinates all the jobs run on the
system by scheduling the task to run on the TaskTrackers and
monitoring the entire task as they are running. If a task fails,
the JobTracker can relaunch the task, possibly on a different
slave node.

Normal configuration of Hadoop sets TaskTrackers and
DataNodes in the same machine of slave nodes, and
JobTracker master normally share the same server with the
NameNode as depicted in Fig.4.

III.

Fig. 4. Topology of typical Hadoop cluster

IV. DNA SEQUENCE GENBANK DATABASE

A. GenBank File System

 NCBI provides GenBank database available for public via
ftp in two formats, namely the GenBank Flat File format
available at NCBI’s anonymous FTP server

ftp://ftp.ncbi.nih.gov/genbank and ASN.1

format available at ftp://ftp.ncbi.nih.gov/ncbi-
asn1.

In GenBank database, sequence records are grouped into
various divisions based either on the source taxonomy or the
sequencing strategy on which the data is obtained. Some of
taxonomic divisions are presented in Table 1. The number of
sequence data files shown increases for each new release. Total
all GenBank file from this release is 2093 files [5].

TABLE I. GENBANK TAXONOMIC DIVISION AND NUMBER OF FILE PER

RELEASE 203 (AUG 2014)[5]

Division code Description Number of files

bct Bacteria 142

inv Invertebrate 40

mam Other mammals 9

pln Plant (inc. Fungi and
algae)

86

DataNode

TaskTracker

Reduce

Map

DataNode

TaskTracker

Reduce

Map

DataNode

TaskTracker

Reduce

Map

NameNode

JobTracker

Client

pri Primate 48

phg Phage 2

rod Rodent 31

vrl Viruses 32

vrt Other vertebrate 33

B. GenBank Flat File Format

All GenBank flat file has the same format and consists of
two main parts; i.e. header information ant sequence entries.
Header information includes the name file, release number,
released datum, division description, and number of sequence
entries as shown in Fig 5.

Fig. 5. Sample of header information of flat file gbbct1.seq from bacterial

division

The second portion contains sequence entries where
separator token “//” put between two successive entries. Within
sequence entry, each line consists of two part, i.e. the first ten
(10) columns in line may contain:

 Keyword; if it begins in column 1. Example:
REFERENCE, LOCUS etc.

 Sub-keyword; if the first two columns in line are blank.
Example AUTHORS as sub-keyword of REFERENCE.

 Blank character indicating that this line a continuation
of information under keyword or sub-keyword above it.

 Number ending in column 9 of the line designates the
numbering of the actual nucleotide sequence position.

 Two slashes (//) in column 1 and 2 indicating the end of
entry.

The second part in position 13 to 80 contains the
information associated to its keyword or sub-keyword.

Fig. 6. Sample of flat file shows header and the first two entries where some

lines deleted for clarity.

V. GENBANK DATABASE ON LOW-END HADOOP CLUSTER

DNA sequence GenBank data used in this work is obtained
via NCBI FTP server. In the previous work we used a single
server to manage DNA sequence for each sequence division.
The bacterial division (bct) was used since it consists the
largest file numbers and grows quite fast. When we do
sequence alignment searching, the process of searching in
single database needs process time too long. Using a Quad
Core server at 2.13GHz, it took about 1500 seconds for
searching in 100 bacterial division flat files from GenBank
release 195 in April 2013 (current release 203 in August 2014
they are 149 files). In the present work, the same data are
uploaded on HDFS cluster consists of one master powered by
Intel Quad Core X3210 at 2.13 GHz and 12 node slaves
powered by Intel Dual Core E2160 @1.8 GHz. This cluster is
built up of low-end commodity computers typically used for
teaching laboratory. For this research purpose the memory is
upgraded from minimum 1 GByte to 4GByte for all node
slaves.

A. Mapper Process

The present work will focus in the searching phase in the
flat files. Hence, only the mapper function of MapReduce
model is needed where filtering is applied against the search-
keyword.

Initially, the flat files are read by InputReader to form
RecordReader which is input pairs for Mapper(k,v) where key
k is entry number and value v is a sequence entry. In the
InputReader a complex RecordReader is built up containing
another key/value pairs where k is either keyword or sub
keyword within sequence entry and value is the real
information appropriate to the key.

Fig. 7. Mapper process model

In the Mapper, filtering process is performed by comparing
the search keyword with the value from information in each
sequence entry and resulting a list of all sequence entries
containing the search keyword.

GBBCT1.SEQ Genetic Sequence Data Bank

 August 15 2014

 NCBI-GenBank Flat File Release 203.0

 Bacterial Sequences (Part 1)

 51396 loci, 92682287 bases, from 51396 reported sequences

GBSMP.SEQ Genetic Sequence Data Bank

 October 15 1992

 GenBank Flat File Release 74.0

 Structural RNA Sequences

 2 loci, 236 bases, from 2 reported sequences

LOCUS AAURRA 118 bp ss-rRNA RNA 16-

JUN-1986

DEFINITION A.auricula-judae (mushroom) 5S ribosomal RNA.

ACCESSION K03160

VERSION K03160.1 GI:173593

KEYWORDS 5S ribosomal RNA; ribosomal RNA.

SOURCE A.auricula-judae (mushroom) ribosomal RNA.

 ORGANISM Auricularia auricula-judae

 Eukaryota; Fungi; Eumycota; Basidiomycotina;

 Heterobasidiomycetidae; Auriculariales;

Auriculariaceae.

REFERENCE 1 (bases 1 to 118)

 AUTHORS Huysmans,E., Dams,E., Vandenberghe,A. and De Wachter,R.

... deleted

BASE COUNT 27 a 34 c 34 g 23 t

ORIGIN 5' end of mature rRNA.

 1 atccacggcc ataggactct gaaagcactg ca...deleted...

 61 gtaccgccca gttagtacca cggtggggga cc...deleted...

//

LOCUS ABCRRAA 118 bp ss-rRNA RNA

15-SEP-1990

DEFINITION Acetobacter sp. (strain MB 58) 5S ribosomal

ACCESSION M34766

VERSION M34766.1 GI:173603

KEYWORDS 5S ribosomal RNA.

SOURCE Acetobacter sp. (strain MB 58) rRNA.

 ORGANISM Acetobacter sp.

 Prokaryotae; Graci
... deleted

B. Scalability Evaluation

Two superior characteristics of Hadoop framework are
scalability and availability performance. The present work will
study more on the scalability of Hadoop using a low-end
cluster. For data-intensive processing such as DNA sequence
searching scalable systems are highly desirable.

The definition of scalability can be considered from two
points of views. First, in terms of data, i.e. given twice the
amount of data, the same application should take at most twice
as long to run. Second in terms of resources: given a cluster
with twice the size, the same application should take no more
than half as long to run.

The study of scalability in term of data was done first using
a cluster with 6 slave nodes where the input data of GenBank
flat file varied from 1 GByte to 6 Gbyte. The 6 Gbyte flat files
are the total size all 100 files of bacterial division from release
195 downloaded from GenBank NCBI in 2013 in the gzip
compressed format. Fig. 8 shows the curve almost linear, i.e.
the growth of required times in same order as the growth of
data size. In other word the low-end cluster indicates very good
data scalability up to the normal data size. Noted that the input
data used are in compressed format as they were downloaded
from NCBI.

Fig. 8. Scalabilty in terms of data

The scalability in terms of resources is tested by varying
number of slave nodes in the cluster and internal memory for
every node. The input data used are all 100 flat files of
bacterial sequence division from release 195 GenBank in
compressed format

Fig. 9. Test of Scalability in terms of resources. Processing time decreases

not in the same order of increasing resources (number of nodes)

TABLE II. PROCESSING TIME WITH HADOOP CLUSTER OF DIFFERENT

NUMBER OF NODE (ALL 4GB RAM)

No.

Nodes

Process.

Time

(seconds)

No.

Nodes

Process.

Time

(seconds)

4 425.8 6 367.2

8

(2x)

305.2

(0.72x)

12

(2x)

284.4

(0.77x)

Fig. 9 shows that the scalability in terms of resources is far
from desired order except in the range of small cluster size.
Table II gives more detail information for scalability testing in
cluster with 4 GB RAM. A cluster with twice the size, the same
application requires more than half time (0.72x and 0.77x) to
run. Increasing internal memories from 1 Gbyte to 4 Gbyte
does reduces the processing time but again it is still not
satisfactory.

We run again the same input flat files data but in
uncompressed format hence the total size of data is about 22
Gbyte or 3.5 times bigger. In uncompressed format, input files
are divided in blocks by HDSF according limit size of each
block. Different block size is studied and the results are given
in Fig. 9.

Fig. 10. Processing time for compressed and uncompressed flat file decreases

not in the same order of increasing resources (number of nodes)

Processing time depends on the block size. Smaller block
size means number of chunks bigger and more time needed for
Hadoop framework to finish the jobs. Increasing number of
chunks will get an advantage if number of node available large
enough to proceed more chunks in parallel. Looking at the
curves in Fig. 10 it is possibly that run time of smaller block
size could be faster when number of nodes is more than 20.

VI. CONCLUDNG REMARKS

A scalability study has been performed for sequence
searching of DNA database on the low-end Hadoop cluster.
The data scalability is good in the meaning that the growth of
required times in same order as the growth of data size. Two
different internal memory sizes has been compared that
quadrupling the RAM from 1 Gbyte to 4 Gbyte gains speed up
but not significant enough.

Increasing cluster size by doubling the number of node
gained speed up about 1.3; this is much lower than the ideal
speed up of 2. Nevertheless, that the processing time decreases
steadily with the growth of the cluster size give a good
promising gain in a larger cluster.

ACKNOWLEDGMENT

The authors would like to thank Direktorat Jendral
Pendidikan Tinggi, Kemendikbud, for funding the presented
work through research grant under “Hibah Bersaing” program.

REFERENCES

[1] E.R. mardis, “The impact of next-generation sequenceing technology on
genetics”, in Trends in Genetics Vol. 24 No.3, Elsevier Ltd, 2008, pp.
133-141.

[2] J. Lin, C. Dyer, “Data-Intensive Text processing with MapReduce”, in
Synthesis Lectures on Human Language Technlogy, vol. 3, no. 1, 2010,
pp.1-177.

[3] E.W.Sayers, T. Barrett, ,”Database Resources of The National Center for
Biotechnology Information”, Nucleic Acids Research., January: Vol.37,
2009, Database issue, pp. D5-D15.

[4] D.A. Benson, I. Karsch_Mizrachi, K. Clarck, D.J. Lipman, J. Ostel,
E.W. Sayers, ,”GenBank”, Nucleic Acids Research, Vol. 40, Database
issue, 2012, pp. D48-D53.

[5] NCBI: NCBI-GenBank Flat File Release 203 Release Notes.
ftp://ftp.ncbi.nih.gov/genbank/release.notes/gb203.release.notes

[6] W.T.J. White, M.D. Hendy, “Compressing DNA Sequence databases
with coil”, BMC Bioinformatics, 2008 vol. 9:242.

[7] J. Dean, S. Ghemawat, “MapReduce:Simplified data Processingon Large
Cluster”, in Proceeding of the 6th Symposium on Operating System
Design and Implementation (OSDI 2004), pp.137-150, California, 2004.

[8] S. Ghemawat, H. Gobioff, S.T. Leung, “The Google File System”, in
Proceeding of the 19th ACM Symposium on Operating Systems
Principles (SOSP 2003), New York, pp. 29-43, 2003.

[9] M. Cafarella, D. Cutting, “Building Nutch: Open Source Search”, ACM
Queue, April 2004, vol.2 (2), pp. 54-61, 2004.

[10] R. Khare, D. Cutting, K. Sitaker, A. Rifkin, “Nutch: A Flexible and
Scalable Open-Source Web Search Engine”, Technical Report, CN-TR-
04-04, CommerceNet Labs, 2004.

[11] K. Shvachko, H. Kuang, S. Radia, R. Chansler, “The Hadoop
Distributed File System”, in Proceeding of the 26th IEEE Symposium on
Massive Storage Systems and Technologies (MSST 2010), May, 2010.

[12] http://hadoop.apache.org/.

[13] T. White, Hadoop: The Defintive Guide, 3rd Edition, USA, O’Reilly,
2012.

