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Abstract— Publicly available DNA sequence database such as 

GenBank managed by National Center for Biotechnology 

Information (NCBI) is very large and still grows exponentially.  

The sequence data are stored in flat file format grouped in 

various division based on the source taxonomy. Bacterial division 

alone consists of more than 100 files has size about 6 Gigabytes in 

total. Searching in 100 files using single server took time about 

1500 seconds in a Quad Cores machine. An effort to speed up this 

process has been worked out by uploading the bacterial sequence 

data on Hadoop Distributed File System on low-end cluster. 

MapReduce computation model is invoked for searching 

algorithm in conjunction with Hadoop Distributed File System as 

both technologies are main component of Hadoop framework. 

Scalability evaluation has been performed to investigate whether 

increasing number of node in the cluster will be fruitful. 
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I.  INTRODUCTION 

The advent of next-generation DNA (Deoxyribon Nucleic 
Acid) sequencing technology has created a very huge and still 
increasing of sequence data that has to be stored, organized and 
delivered to biomolecular scientist for further research [1]. The 
European Bioinformatics Institute (EBI), which organizes a 
central repository of sequence data called EMBL-bank, has 
increased storage capacity from 2.5 Petabytes to 5 Petabytes in 
2009 [2]. Publicly available DNA sequence database called 
genbank is managed by National Center for Biotechnology 
Information (NCBI), at the National Institutes of Health (NIH, 
USA), which receives data through the international 
collaboration with DNA Databank of Japan (DDBJ) and 
European Molecular Biology Laboratory (EMBL) as well as 
from the scientific community [3]. These three partners in the 
collaboration called The International Nucleotide Sequence 
Database Collaboration (INSDC) exchange data daily to ensure 
that comprehensive data of sequence information is available 



worldwide, for example NCBI make the Genbank data 
available for free through FTP (ftp://ftp.ncbi.nih.gov/genbank) 
[4]. 

The genbank database release 203 in August 2014 contains 
about 652 GByte sequence data in uncompressed traditional 
flat file as well as in ASN.1 format. The size of this database is 
expected to grow exponentially as from 1982 to the present; the 
number of bases in genbank has doubled approximately every 
18 months [5] as shown in Fig. 1. The volume of data with this 
size presents a great challenge in storage and communication 
of data. Currently, sequence data in genbank is kept in large 
flat files which are compressed using standard gzip 
compression. Many researches have been done on compressing 
DNA sequence individually or the entire database as worked in 
[6] to circumvent the storage problem. While increasing the 
compression ratio of sequence individual data or sequence 
databases diminishes the storage problem, but the data 
communication problem is not directly taken care.  

 

Fig. 1. The growth of genbank database from Dec 1982 to Aug 2014 

 (ftp://ftp.ncbi.nih.gov/genbank/release.notes/gb203.release.notes) 

In traditional high performance computing (HPC) 
applications, it is a common practice to have “high-end 
processing nodes” with a large amount of shared memory and 
“storages nodes” attached together by a high-capacity 
interconnection device. This scaling “up” approach is not cost 
effective, since the cost of such machine does not scale 
linearly. Tackling large data problems asks an alternative 
approach than the traditional model of computing. Instead of 
scaling “up” approach, scaling “out” approach; i.e. utilizing a 
large number of commodity low-end servers, is preferred for 
data-intensive workload [2].  

The separation of computing node and storage node creates 
bottleneck in the network. As an alternative to moving around 
the data, it is more efficient to move processing around to the 
data; hence the processors and the storage are co-located.  In 
this type of computing model, one can take the benefit of data 
locality by running code on the computing processor directly 
attached to the block of they need. The architecture of 
computer cluster which complies to this model is called 
distributed file system. Over this type of cluster a so called 
MapReduce programming model is usually invoked as 

proposed 
by Dean 
and 
Ghemaw
at from 
Google 
in [7]. 
They 
claimed 
that 
Google’s implementation of MapReduce and Google File 
System (GFS) [8] which run on a large cluster of commodity 
machines is highly scalable. 

Doug Cutting who founded a Nutch project [9]; i.e. full-
featured text indexing and searching library, faced with the 
scalability issues in his project. Inspired by Google’s work in 
[7, 8], he implemented the new framework and ported Nutch to 
it. Using the new framework, named Hadoop, Nutch became 
more scalable than any web crawler engine at that time [10]. In 
2006, Doug Cutting is hired by Yahoo! to work with a 
dedicated team on improving Hadoop as an open source 
Apache project [11, 12]. 

II. HADOOP FRAMEWORK 

Now a day, Hadoop is a collection of many related 
subprojects of infrastructure for distributed computing. It 
consists of two main components, namely Hadoop Distributed 
File System (HDFS) and MapReduce distributed computation 
programming framework. Using these two main cores, one can 
decompose a very large data set and let  computations run in 
parallel close to data across many commodity servers. Other 
subprojects under Hadoop, such as Pig (dataflow language and 
parallel execution framework), Hbase (column oriented table 
service), and Zookeper (distributed coordination service) and 
Hive (data warehouse infrastructure), provide complementary 
services build on the core to add higher level abstraction [11, 
13]. 

A. Hadoop Distributed File System 

HDFS is a file system that is designed for run a MapReduce 
application on a cluster of commodity computers. A big data 
set will be divided into smaller (say 64Mbyte) blocks/chunks 
that are spread among computer nodes in the cluster via HDFS. 
These chunks of data input will be read in parallel which 
provide a much higher throughput. For data-intensive 
processing, the number of chunks will be too large to be moved 
around between nodes in the cluster. Instead of moving the 
data, Hadoop lets program codes move around. This move-
code-to-data concept is more efficient with respect to 
communication load because the program codes are orders of 
magnitude smaller than the data chunk. 

 HDFS stores file system metadata and application data 
separately in different servers. While file system metadata is 
stored on single dedicated server, called NameNode; 
application data are distributed on a number of other servers 
called DataNodes. As depicted in Fig. 2. 

The NameNode server is the master of HDFS that manages 
the slave DataNodes daemons to do the low-level I/O tasks. 

 



The NameNode acts as a bookkeeper that keeps track how the 
application data are split into data chunks and where those 
chunks are stored. The DataNodes reside in the slave machines; 
provide the block storage and data retrieval services for the 
client application.  

Fig. 2. HDFS Cluster consists of a NameNode and 6 DataNodes servers. 

B. MapReduce: Distributed Computation Model  

MapReduce is a distributed programming model which is 
inspired from functional programming model. MapReduce 
proceed large datasets normally in two stages, i.e. map and 
reduce stage. In the first stage, the map function is applied 
over all input records in the large datasets and can be 
performed in parallel since each functional application happens 
independently. The intermediate result of the first stage if 
required could be read in aggregation way by the reduce 
(folding) function. Application programmer just needs to 
define these two main functions and the MapReduce 
framework will execute the actual processing which 
decomposes the job into a set of map tasks, shuffle-sort and a 
set of reduce tasks. 

 

Fig. 3. Simplified MapReduce process  

In contrary to the more common relational tables, 
MapReduce uses its basic data structure in form of key-value 
pairs (k, v). This form of data structure provides the flexibility 
to tackle semi structured or even unstructured data sets. 

The mapper is applied to every input key-value pair (k1, v1) 
spread over a number of files (or blocks) to produce a list of 
intermediate key-value pairs [(k2, v2)]. 

 map: (k1,v1) →[(k2,v2)] 

The reducer is applied to all values corresponding to the 
same intermediate key (k2, [v2]) to generate a list of output key-
values [(k3,v3)]. 

 reduce: (k2, [v2]) →[(k3,v3)] 

As in HDFS, the master-slave architecture is invoked to 
control the job execution processes in the MapReduce. As 
slaves, TaskTrackers run the actual computation jobs of 
MapReduce and send progress report to a master, called 

JobTracker. JobTracker coordinates all the jobs run on the 
system by scheduling the task to run on the TaskTrackers and 
monitoring the entire task as they are running. If a task fails, 
the JobTracker can relaunch the task, possibly on a different 
slave node.  

Normal configuration of Hadoop sets TaskTrackers and 
DataNodes in the same machine of slave nodes, and 
JobTracker master normally share the same server with the 
NameNode as depicted in Fig.4. 

 

 

 

 

 

 

 

 

 

III.  

 

 

 

Fig. 4. Topology of typical Hadoop cluster 

IV. DNA SEQUENCE GENBANK DATABASE 

A. GenBank File System 

 NCBI provides GenBank database available for public via 
ftp in two formats, namely the GenBank Flat File format 
available at NCBI’s anonymous FTP server 

ftp://ftp.ncbi.nih.gov/genbank and ASN.1 

format available at ftp://ftp.ncbi.nih.gov/ncbi-
asn1.  

In GenBank database, sequence records are grouped into 
various divisions based either on the source taxonomy or the 
sequencing strategy on which the data is obtained. Some of 
taxonomic divisions are presented in Table 1. The number of 
sequence data files shown increases for each new release. Total 
all GenBank file from this release is 2093 files [5]. 

TABLE I.  GENBANK TAXONOMIC DIVISION AND NUMBER OF FILE PER 

RELEASE 203 (AUG 2014)[5] 

Division code Description Number of files 

bct Bacteria 142 

inv Invertebrate 40 

mam Other mammals 9 

pln Plant (inc. Fungi and 
algae) 

86 
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pri Primate 48 

phg Phage 2 

rod Rodent 31 

vrl Viruses 32 

vrt Other vertebrate 33 

B.   GenBank Flat File Format 

All GenBank flat file has the same format and consists of 
two main parts; i.e. header information ant sequence entries. 
Header information includes the name file, release number, 
released datum, division description, and number of sequence 
entries as shown in Fig 5. 

Fig. 5. Sample of header information of flat file gbbct1.seq from bacterial 

division 

The second portion contains sequence entries where 
separator token “//” put between two successive entries. Within 
sequence entry, each line consists of two part, i.e. the first ten 
(10) columns in line may contain:  

 Keyword; if it begins in column 1. Example: 
REFERENCE, LOCUS etc. 

 Sub-keyword; if the first two columns in line are blank. 
Example AUTHORS as sub-keyword of REFERENCE. 

 Blank character indicating that this line a continuation 
of information under keyword or sub-keyword above it. 

 Number ending in column 9 of the line designates the 
numbering of the actual nucleotide sequence position.  

 Two slashes (//) in column 1 and 2 indicating the end of 
entry. 

The second part in position 13 to 80 contains the 
information associated to its keyword or sub-keyword. 

Fig. 6. Sample of flat file shows header and the first two entries where some 

lines deleted for clarity. 

V. GENBANK DATABASE ON LOW-END HADOOP CLUSTER 

DNA sequence GenBank data used in this work is obtained 
via NCBI FTP server. In the previous work we used a single 
server to manage DNA sequence for each sequence division. 
The bacterial division (bct) was used since it consists the 
largest file numbers and grows quite fast. When we do 
sequence alignment searching, the process of searching in 
single database needs process time too long. Using a Quad 
Core server at 2.13GHz, it took about 1500 seconds for 
searching in 100 bacterial division flat files from GenBank 
release 195 in April 2013 (current release 203 in August 2014 
they are 149 files). In the present work, the same data are 
uploaded on HDFS cluster consists of one master powered by 
Intel Quad Core X3210 at 2.13 GHz and 12 node slaves 
powered by Intel Dual Core E2160 @1.8 GHz. This cluster is 
built up of low-end commodity computers typically used for 
teaching laboratory. For this research purpose the memory is 
upgraded from minimum 1 GByte to 4GByte for all node 
slaves. 

A. Mapper Process 

The present work will focus in the searching phase in the 
flat files. Hence, only the mapper function of MapReduce 
model is needed where filtering is applied against the search-
keyword.  

Initially, the flat files are read by InputReader to form 
RecordReader which is input pairs for Mapper(k,v) where key 
k is entry number and value v is a sequence entry. In the 
InputReader a complex RecordReader is built up containing 
another key/value pairs where k is either keyword or sub 
keyword within sequence entry and value is the real 
information appropriate to the key. 

 

Fig. 7. Mapper process model 

In the Mapper, filtering process is performed by comparing 
the search keyword with the value from information in each 
sequence entry and resulting a list of all sequence entries 
containing the search keyword. 

 

GBBCT1.SEQ          Genetic Sequence Data Bank 

                          August 15 2014 

 

                NCBI-GenBank Flat File Release 203.0 

 

                     Bacterial Sequences (Part 1) 

 

 51396 loci,    92682287 bases, from   51396 reported sequences 

 

GBSMP.SEQ          Genetic Sequence Data Bank 

                         October 15 1992 

 

                 GenBank Flat File Release 74.0 

 

                     Structural RNA Sequences 

 

      2 loci,       236 bases, from     2 reported sequences 

 

LOCUS       AAURRA        118 bp ss-rRNA            RNA       16-

JUN-1986 

DEFINITION  A.auricula-judae (mushroom) 5S ribosomal RNA. 

ACCESSION   K03160 

VERSION     K03160.1  GI:173593 

KEYWORDS    5S ribosomal RNA; ribosomal RNA. 

SOURCE      A.auricula-judae (mushroom) ribosomal RNA. 

  ORGANISM  Auricularia auricula-judae 

            Eukaryota; Fungi; Eumycota; Basidiomycotina;  

            Heterobasidiomycetidae; Auriculariales; 

Auriculariaceae. 

REFERENCE   1  (bases 1 to 118) 

  AUTHORS   Huysmans,E., Dams,E., Vandenberghe,A. and De Wachter,R. 

... deleted .... 

BASE COUNT       27 a     34 c     34 g     23 t 

ORIGIN      5' end of mature rRNA. 

        1 atccacggcc ataggactct gaaagcactg ca...deleted... 

       61 gtaccgccca gttagtacca cggtggggga cc...deleted...  

// 

LOCUS       ABCRRAA       118 bp ss-rRNA            RNA       

15-SEP-1990 

DEFINITION  Acetobacter sp. (strain MB 58) 5S ribosomal  

ACCESSION   M34766 

VERSION     M34766.1  GI:173603 

KEYWORDS    5S ribosomal RNA. 

SOURCE      Acetobacter sp. (strain MB 58) rRNA. 

  ORGANISM  Acetobacter sp. 

            Prokaryotae; Graci 
... deleted .... 



B. Scalability Evaluation 

Two superior characteristics of Hadoop framework are 
scalability and availability performance. The present work will 
study more on the scalability of Hadoop using a low-end 
cluster. For data-intensive processing such as DNA sequence 
searching scalable systems are highly desirable. 

The definition of scalability can be considered from two 
points of views. First, in terms of data, i.e. given twice the 
amount of data, the same application should take at most twice 
as long to run. Second in terms of resources: given a cluster 
with twice the size, the same application should take no more 
than half as long to run.  

The study of scalability in term of data was done first using 
a cluster with 6 slave nodes where the input data of GenBank 
flat file varied from 1 GByte to 6 Gbyte. The 6 Gbyte flat files 
are the total size all 100 files of bacterial division from release 
195 downloaded from GenBank NCBI in 2013 in the gzip 
compressed format. Fig. 8 shows the curve almost linear, i.e. 
the growth of required times in same order as the growth of 
data size. In other word the low-end cluster indicates very good 
data scalability up to the normal data size. Noted that the input 
data used are in compressed format as they were downloaded 
from NCBI. 

Fig. 8. Scalabilty in terms of data  

The scalability in terms of resources is tested by varying 
number of slave nodes in the cluster and internal memory for 
every node. The input data used are all 100 flat files of 
bacterial sequence division from release 195 GenBank in 
compressed format 

 

Fig. 9. Test of Scalability in terms of resources. Processing time decreases 

not in the same order of increasing resources (number of nodes) 

TABLE II.  PROCESSING TIME WITH HADOOP CLUSTER OF DIFFERENT 

NUMBER OF NODE (ALL 4GB RAM) 

No. 

Nodes 

Process. 

Time 

(seconds) 

No. 

Nodes 

Process. 

Time 

(seconds) 

4 425.8 6 367.2 

8  

(2x) 

305.2 

(0.72x) 

12 

(2x) 

284.4 

(0.77x) 

 

Fig. 9 shows that the scalability in terms of resources is far 
from desired order except in the range of small cluster size. 
Table II gives more detail information for scalability testing in 
cluster with 4 GB RAM. A cluster with twice the size, the same 
application requires more than half time (0.72x and 0.77x) to 
run. Increasing internal memories from 1 Gbyte to 4 Gbyte 
does reduces the processing time but again it is still not 
satisfactory.  

We run again the same input flat files data but in 
uncompressed format hence the total size of data is about 22 
Gbyte or 3.5 times bigger. In uncompressed format, input files 
are divided in blocks by HDSF according limit size of each 
block. Different block size is studied and the results are given 
in Fig. 9. 

Fig. 10. Processing time for compressed and uncompressed flat file decreases 

not in the same order of increasing resources (number of nodes) 

Processing time depends on the block size. Smaller block 
size means number of chunks bigger and more time needed for 
Hadoop framework to finish the jobs. Increasing number of 
chunks will get an advantage if number of node available large 
enough to proceed more chunks in parallel. Looking at the 
curves in Fig. 10 it is possibly that run time of smaller block 
size could be faster when number of nodes is more than 20. 

 

 

 



VI. CONCLUDNG REMARKS 

A scalability study has been performed for sequence 
searching of DNA database on the low-end Hadoop cluster. 
The data scalability is good in the meaning that the growth of 
required times in same order as the growth of data size. Two 
different internal memory sizes has been compared that 
quadrupling the RAM from 1 Gbyte to 4 Gbyte gains speed up 
but not significant enough. 

Increasing cluster size by doubling the number of node 
gained speed up about 1.3; this is much lower than the ideal 
speed up of 2. Nevertheless, that the processing time decreases 
steadily with the growth of the cluster size give a good 
promising gain in a larger cluster. 
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