

Multiple Scattered Local Search for Course

Scheduling Problem

A. Jamal

Department of Informatics

University Al-Azhar Indonesia

Jakarta, Indonesia

adja@uai.ac.id

Abstract—Course scheduling problem is a nondeterministic

polynomial time-complete problem which is hard to solve. One of

the popular method for solving the problem is the so-called local

search algorithm family, which is basically search a better

solution in the neighborhood of previously known potential

solution iteratively. Local search technique has a weakness that it

gets stuck easily in a local optimum or on a plateau. Various

efforts have been done in many literatures to circumvent this

weakness. Current work investigates an already improved

scattered local search by augmenting randomly generated initial

population of schedules in the local search algorithm. This

algorithm will be compared to an originally population based

genetic algorithm which is enhanced by letting local search

technique on each individual schedule in every generation. The

result has shown that the population based local search performs

better than the hybrid genetic algorithm.

Keywords—Course Scheduling, Optimization, local search

Algorithms, Genetic Algorithms

I. INTRODUCTION

Constructing a course schedule is one of the main challenge
within a university that must be performed in every academic

period. This problem is considered as a nondeterministic
polynomial time-complete problem [1,2] which is quite
difficult and time-consuming to solve. This is a multi-
dimensional and multi-constrained combinatorial optimization
problem, that has been being a subject of extensive research
efforts due to its complexity and wide application such as
school timetables [3], exam scheduling [2] and course
scheduling [1,4,5,6,7,8].

Course scheduling process involves placements of many
events in available time and space resources where initially
specified constraints must be satisfied. In this study, an event
could be a teaching class or a laboratory class where a
combination of lecturers or instructors, student-groups and a
course was designated beforehand. This type of course
scheduling is called a curriculum based course scheduling or
timetabling wherein a student-group is associated to the
curriculums [9]. Scheduling problem could also include
selections of courses that should be taught by which lecturer.
Another type of scheduling involves every individual student
who has enrolled for their courses. These last two types of
course scheduling are not considered in the present study.

There are two sets of predefined constraints which must be
deliberated by the university course scheduling problem. The
first set of constraints is named hard constraints which must not
be violated to construct a valid or feasible schedule. The
second set is soft constraints which are desired but not
necessarily to be fulfilled. Hence, finding the valid or feasible
schedule is merely a search problem rather than an
optimization problem. However, fulfilling the soft constraints
is a real optimization process in this study.

Course scheduling problem has been solved by wide range
type of algorithms. The most traditional one is a so-called
graph coloring heuristic method whereby course are assigned
to rooms and time-slots one by one in particular order. The
second type falls into the local search algorithm family [8]
whereby searching is carried out in neighborhood of a known
state rather than exploring search space extensively. This type
of algorithm is quite popular among the researcher who
recommended enhanced variant of local search algorithm such
as simulated annealing method [3,5], tabu search method [4]
and hill-climbing search method [6].

The last type of algorithm is based on population
mechanism which starts with many different solutions and
explores possible solution in wider search space. The most
popular population based algorithms used to solve course
scheduling are evolutionary algorithms [10], genetic algorithm
[2,7,9], and harmony algorithm [1].

Due to two different criteria in the course scheduling
problem, i.e. hard constraints that governs the search problem
and soft constraints that constitutes the objective function of
the optimization problem, various approaches can be found in
the published research works. Combining these two set
constraints with weight factors is the most frequently used
approach, wherein the weight factor of soft constraint is just
small fraction of hard constraint weight factor. Another popular
approach is a staging method wherein a fulfilling of hard
constraints in the first stage followed by an optimization

process to gain as many as possible soft constraint satisfactions
[7]. Some of the researchers used hybrid algorithms to tackle
this staging method [9,11].

In the previous study, we had incorporated evolutionary
algorithm (EA) [12] and the improved scattered hill-climbing
search method (SHC) [6] into three stage method [11]. We had
also compared these two algorithm separately, and proved that
SHC is faster than EA in case SHC could find the feasible
schedule [13]. Though, the probability of success in searching
the feasible solution, i.e. the hard constraint free schedule is not
more than 30% for SHC. This is caused by the nature of local
search of SHC which is good in exploiting the possible solution
in the neighborhood of a solution state. In contrary, the EA is
good in exploring possible solution by generating new
successor state by mutation and cross-over two parent states.
Hence the probability of success in searching the feasible
schedule is much better, but it needs much more iteration, i.e.
number of generation because the nature of probabilistic
process in EA.

Knowing the above mentioned phenomenon, a number of
SHC method from randomly generated initial states will be
conducted to obtain higher probability of success in finding
feasible schedules. In case of EA, the exploitation capability
will be embedded in each member of population before the
evolution process started in every new generation.

II. SOLUTION METHOD FOR COURSE SCHEDULING PROBLEM

A. Course Scheduling Problem

The curriculum based course scheduling problem consist of
the following entities:

 a set of room {r1, r2, … rnoR} which has a seat capacity
and specified as a lecture- or an interactive computer
classroom,

 a set of time-slot {t1, t2, … tnoT} wherein lecturers has
preferences to teach,

 a set of course {c1, c2, … cnoC} which is based on
curriculum for each student group and may have
multiple section (i.e. credit unit where one course
section occupies more than one time-slot),

 a set of lecturer {l1, l2, … lnoL} which has been assigned
to specific course(s) and has a certain unavailable time-
slot and preference time-slot,

 a set of student group {s1, s2, … snoS} with associated
number of student from a specific program and same
grade,

 a set of events (i.e. classes) {e1, e2, … enoE}, to be
scheduled in a certain number of time-slots and a room,
is defined as combination of a specific course with
assigned lecturer attended by certain number of student
group.

A course schedule is said to be feasible and valid when the
following hard constraints are satisfied:

This article is sponsored by LP2M UAI through International Seminar
Grant.

 all events have been assigned to a time-slot and a room
(complete schedule),

 no room is occupied by more than one event at the same
time (room conflict),

 no lecturer teaches more than one event at the same
time (lecturer conflict),

 no student group from the same program and same
grade attends more than one event at the same time
(student conflict),

 number of attending students in the student group must
not exceed the room capacity,

 room has a feature (e.g. laboratory) required by the
assigned course,

 no lecturer teaches in time-slot which is unavailable for
him/her,

 an event with a multiple section course must be
assigned in the same room contiguously (continue
event).

There are soft constraints that are preferably fulfilled to

get a so-called optimum schedule. Some examples of these

soft constraints are as follows:

 a lecturer should be assigned in his/her preference time-
slot

 a lecturer should not be assigned in his/her avoiding
time-slot

 a classroom should not be half empty, i.e. the number of
attending student less than a half of room capacity

 no student should be scheduled to sit more than three
events on the same day

 minimize scheduled events in the last time-slot of a day

 morning class-hours are preferred than afternoon class-
hours

 minimize unoccupied room between two occupied
time-slots

The first three of the above mentioned soft constraints will
be taken into account in the presented work.

B. Course Scheduling Model

Course schedules are represented in a variety of models.
References [1,2,7,10] uses a two dimensional matrix where
rooms and timeslots are represented by row and column and
each cell of matrix represents a single event. In the previously
published works [6,11,12,13] we extended the dimensional
matrix into three dimensional work by remodeling the one
dimensional timeslot representing column into a two
dimensional matrix where each row corresponds to day and
column to hour. Another approach is direct representation, i.e.
each gene is represented by a triple of event, room and time-
slot <ei, rj, tk> [8, 10].

The matrix model governs that the “room conflict” hard
constraint is always fulfilled. However, generating the initial
state is quite difficult when all events must be assigned into the
cells taken into account multiple section event must be
assigned in the same room contiguously. Therefore, the matrix
model is not applicable for the present work since it requires
randomly generated initial state for SHC. However, instead of
using direct representation of triple model, we introduce tuple
of two:

 ei, f(rj, tk)  

where space (room)- and time resources are formulated as a
single value function of resources f(rj, tk) whose value ranging
from 1 to multiplication of noR and noT, i.e. number of rooms
and timeslots, respectively. Generating random initial state of
schedule is as easy as generating random number f in this range
for each event ei.

C. Scheduling Algorithm

The original hill-climbing search method is a not
population based technique. The fore knowledge that this kind
of local search method gets stuck frequently in a local optimum
as we had shown in [13], lead us to invoke a population of
randomly generated schedules performing the scattered hill-
climbing search method. This population based scattered hill
climbing search, shortly hereafter named a multiple scattered
local search, will proceed for certain number of iterations until
one or more individual schedules from the population become
feasible and valid, i.e. none of hard constraints are violated.
While the iteration is still in progress, course schedules that
already feasible will further undergo in the second stage,
searching for the optimum solution in the neighborhood of the
found feasible state.

Algorithm for a one-step single scattered hill-climbing
search is shown in Fig. 1.

Fig. 1. Scattered hill-climbing algortihm

In the present work, this function is invoked for each
schedule in the population. Note that the function of HC-SC-
penalty is a combination of hard constraint violation (penaltyhc)
reduced by a small part of soft constraint fulfillment (scoresc)

function SCATTERED-HILL-CLIMBING(state)

 inputs : state: a schedule

 local variables: new, neighbor: a schedule

 penalty: hard constraint violation

returns: new state which has less violation

on hard constraint

 penalty ← HC-SC-PENALTY(state) -

 new ← state

for i ← 1 to neighborhood size do

 neighbor ← MUTATE(state)

 if HC-SC-PENALTY(neighbor) ≤ penalty do

new ← neighbor

penalty ← HC-SC-PENALTY(neighbor)

 end if

 end for

 return new

as given in (2). The soft constraint fulfillment is an optional in
this part of algorithm but it turns out that its existence is very
significant to improve the effectiveness of the algorithm.

 HC-SC-penalty weighthc * penaltyhcweightsc * scoresc

Any schedule that reached the zero violation of hard
constraint, will further undergo a local search algorithm as
depicted in Fig. 2 to maximize the fulfillment of soft
constraints (SC-SCORE). The multiple scattered local search
iteration will stop when a specified number of schedules
become feasible or maximum iteration is reached.

Performing the scattered local search in a population
scheme rather than a single schedule gives more explorative
capability in this local search method, of course at cost of extra
computation time. To gain a better view whether this extra cost
worthy, we will compare the performance of MSLS (multiple
scattered local search) with the evolutionary algorithm [12]
using the same two tuple model. We add also some
exploitation booster by letting each chromosome at every new
generation in the evolution process does the same single
scattered hill-climbing search from Fig. 1. This addition of hill-
climbing search into the standard genetic algorithm is also used
in [14] to minimize two objective functions, i.e. soft constraint
and robustness.

Fig. 2. Scattered local search around the feasible schedule algortihm

Comparing with the previous work in [12], the algorithm in
the present work can do the real genetic mechanism, namely
cross-over. Because of the two tuple model from Eq. 1, the
chromosome will form just like a common integer
chromosome, as shown in Fig. 3. All events are always taken in
the process, satisfy the complete schedule of hard constraint,
hence this will not be destroyed by cross-over mechanism as it
was in the three dimensional matrix model we used in [12,13].
The present evolutionary algorithm will be called hybrid
genetic algorithm (HGA).

Fig. 3. Course schedule chromosome

where

 finumber of space-time resources  

Tournament of 5 is used for selection of parent
chromosome for crossover mechanism. Before parent selection,
elitism mechanism is done by using truncated selection
scheme. The selection is performed based on violation of hard
constraint and fulfillment of soft constraint, combined using
weight factor as given in (2).

Elite chromosomes that reach zero hard constraint
violation, i.e. feasible schedule, will be further proceeded in the
second phase performing local search optimization related to
the soft constraints by keeping the zero violation of hard
constraint as given in Fig. 2.

III. RESULTS AND DISCUSSION

Computation complexity of one iteration for these two
different algorithms, i.e. multiple scattered local search
(MSLS) and hybrid genetic algorithm (HGA) will be discussed
first. The complexity of evolutionary algorithm is more than
two times of a single scattered hill-climbing algorithm when
the population size of evolutionary algorithm and
neighborhood size of hill-climbing are the same [13]. In the
present work, the complexity of one iteration for MSLS and
HGA is in the same order if the same population– and
neighborhood size are used in both algorithms. Hence, the
number of iteration is the only extent of computation
complexity when we compare MSLS and HGA with the same
size of population and neighbors.

The probabilistic nature of both algorithms makes the
behavior of algorithm difficult to analyze. Reference [15, 16]
introduced an empirical approach to analyze the behavior of
non-deterministic algorithm by constructing run time
distribution (RTD) and run length distribution (RLD). In
practice, this empirical RTD and RLD are determined by
running the respective algorithm for a number times on a given
problem instance up to some cut-off time or iteration and then
for each successful run, recording the required time or the
required number of iteration to find a solution, respectively for
RTD or RLD. For this study, we use two small sets of
curriculum for experiment as given in Table I.

TABLE I. TWO SMALL SETS OF CURRICULUM DATA

Specification I II

Number of events 25 51

Number of instructors 14 23

Number of class rooms 2 4

Number of student groups 4 7

Number of events hour 67 138

Available time slots 80 160
….

….
ei

f(rj, tk)

1

f1

noE

fnoE

2

f2

function LOCAL-SEARCH-OPTIMIZATION(state)

 inputs : state: a feasible schedule

 local variables: new, neighbor: a schedule

 score: soft constraint fulfillment

returns: new state which has more

fulfillment on soft constraint

 score ← SC-SCORE(state)

 new ← state

for i ← 1 to neighborhood size do

 neighbor ← MUTATE(state)

 if SC-SCORE (neighbor) > score and

 HC-PENALTY(neighbor) = 0 do

new ← neighbor

score ← SC- SCORE (neighbor)

 end if

 end for

 return new

For the first test, we run both algorithms to find a feasible
schedule on the same curriculum data I by setting a cut-off
iteration of 1000. The computational parameter size, i.e.
population- and neighborhood size for both algorithms are set
to be equal. The resulting RTD and RLD are given in Fig. 4
and Fig. 5. That RTD has similar shape as RLD proves the time
consumed for one iteration by both algorithms with the same
computational size parameters are equal. Furthermore, the test
results have shown that MSLS yields higher probabilities of
success for all range of iterations. This outcome is very
contradictive with the previous comparing study between
traditional GA and the single SHC wherein the first algorithm
is more superior in the probability behavior [12,13].

Fig. 4. RTD for MSLS and HGA with the same computational size

parameter, i.e. population size=40 and neighborhood size =50

Fig. 5. RLD for MSLS and HGA with the same computational size

parameter, i.e. population size=40 and neighborhood size =50

Both computational size parameters give the extent of
randomization on the algorithms but for different objectives.
While the number of schedule population aims to add more
exploration power in a wider search area, the neighborhood
size of scattered schedules yields more exploitation random
capability in depth.

Effect of these two computational parameter sizes are
studied. Higher neighborhood size yields better probability in
term of iterations as shown in RLD from Fig. 6. However, in
term of run time, this parameter has no effect since this
neighborhood size is inversely proportional to run time as
depicted in RTD from Fig.7.

Effect of the population sizes are presented in Fig. 8 and
Fig. 9. Note that when only one schedule is considered in the
population, namely Sc=1, MSLS becomes a scattered local
search as in the previous published works [6,13]. The
probability of success for the scattered local search here is not
more than 50%. Probability in the iteration distribution is
getting better when the population size is larger, though in run
time distribution probability curve shifts right to slower region
of computing run time. In spite of this, it is proven that a
probability of 99% success for MSLS needs a sufficient
population size.

Fig. 6. RLD for MSLS with the same population size=40 and variation of

neighborhood size (nN= 5, 25, 50)

Fig. 7. RTD for MSLS with the same population size=40 and variation of

neighborhood size (nN= 5, 25, 50)

Results given in Fig. 8 and Fig. 9 are obtained by running
MSLS on curriculum data II for 200 times up to cut-off 5000
iterations. The problem of curriculum data II is two times
bigger than data I. Doubling the problem size requires at least
five times number of iterations and eight times longer run time
for a same level of probability of success.

Beside the size parameters, i.e. population- and
neighborhood size, MSLS has also two weight factors to be set.
In searching for feasible schedules, penalty function that
includes small contribution of soft constraint satisfaction, i.e.
0.1 SC + 0.9 HC yields better probability curve than 100% HC
in the penalty function as shown in Fig. 10. Nevertheless,

excessive contribution of soft constraint satisfaction will shift
RTD curve slightly to slower region of computation time.

RTD shown in Fig. 10 is obtained from 200 test runs on
curriculum data I up to cut-off 100 iterations or four feasible
schedules were found. It is interesting to note here that MSLS
is capable to seek a number of valid schedules up to about 20%
of population size without too much extra iterations or
computation time. RLD from this test is not presented because
it has similar shape with RTD since run time required for one
iteration is equal in this particular case for every probability
curve in Fig. 10.

Fig. 8. RLD for MSLS with the same neighborhood size =50 and variation of

population size (Sc= 1, 5, 40)

Fig. 9. RTD for MSLS with the same neighborhood size =50 and variation of

population size (Sc= 1, 5, 40)

Fig. 10. RTD for MSLS with the same neighborhood size =50 and population

size=40, varying weight factor in penalty function in (2)

For the last test, we evaluate effect of neighborhood size on
the probabilistic of success for HGA. The test results are given
again in Fig. 11 and Fig. 12. If neighborhood size n=0, HGA
becomes a traditional GA, and the test result shows that this
GA is the worst among HGA with respect to RTD and RLD,
even for HGA with very small neighborhood n=2. Similar to
the case for MSLS, effect of neighborhood size only significant
on RLD, not on RTD with the same reason.

Fig. 11. RLD for HGA with the same population size=40 and variation of

neighborhood size (n= 0, 2, 4, 50)

Fig. 12. RTD for HGA with the same population size=40 and variation of

neighborhood size (n= 0, 2, 4, 50)

IV. CONCLUSIONS

We have presented a multiple scattered local search
algorithm, which is a population based version of randomized
hill-climbing algorithm. Compared to the original hill-climbing
search, the algorithm incorporates stochastic behavior in two
different parts, namely during the improvement step in the
neighborhood region and in the constructing of initial
population. states. The probabilistic behavior of the algorithm
was evaluated using empirical approaches by constructing run
time distribution and run length distribution. The test results
have shown that the probabilistic of success run for the

presented algorithm is better than the original scattered local
search and also much better than the hybrid genetic algorithm
for the same problem instances.

Another advantage of the multiple scattered local search
which is still to be exploited, is a strong parallelism inherent in
the algorithm. Taking advantage of this parallelism by
implementing the algorithm in parallel processing is practically
necessary to solve the real world course scheduling problem
whose problem size much bigger than in the presented work.

REFERENCES

[1] M.A. Al-Betar, A.T. Khader and T.A.Gani, “A harmony search
algorithm for university course timetabling,” in Proceedings of the 7th
International Conference on the Practice and Theory of Automated
Timetabling, E. Burke, M. Gendreau (eds.). The Montréal, Canada,
2008.

[2] E.K. Burke, D.G. Elliman and R.F. Weare, “A genetic algorithm based
university timetabling system,” in Proceedings of the 2nd East-West
International Conference on Computer Technologies in Education, Sept,
1994, Crimea, Ukraine, pp. 35-40

[3] D. Abramson, “Constructing school timetables using simulated
annealing: parallel and sequential solutions”, Management Science, Vol.
37, No. 1, ,January, 1991, 98-113

[4] A. Elloumi, H. Kamoun and J. Ferland, “A tabu search for course
timetabling problem at a Tunisian,” in Proceeding of the 7th
International Conference on the Practice and Theory of Automated
Timetabling PATAT '08, E.K. Burke and M. Gendreau (eds), August
2008

[5] M.A.S. Elmohamed, G. Fox, and P. Coddington, “A comparison of
annealing techniques for academic course scheduling”, DHPC-045,
SCSS-777, 1998

[6] A. Jamal, “Solving university course scheduling problem using
improved hill climbing approach,” in Proceeding of the International
Joint Seminar in Engineering, August 2008, Jakarta, Indonesia

[7] R. Lewis and B. Paechter, ”Application of the grouping genetic
algorithm to university course timetabling,” in Evolutionary
Computation in Combinatorial Optimization, G. Raidl and J. Gottlieb
(eds), Berlin Germany, Springer LNCS 3448, 2005, 144-153

[8] D. Moody, G. Kendall and A. Bar-Noy, “Constructing initial
neighborhoods to identify critical constraints,” in Proceedings of the 7th
International Conference on the Practice and Theory of Automated
Timetabling PATAT '08, Edmund K Burke and Michel Gendreau (eds),
Universete de Montreal, August 2008

[9] S. Massoodian, A. Esteki, ”A hybrid genetic algorithm for curriculumc
based course timetabling,” in Proceedings of the 7th International
Conference on the Practice and Theory of Automated Timetabling
PATAT '08, Edmund K Burke and Michel Gendreau (eds), Universete
de Montreal, August 2008

[10] P. Myszkowski and M. Norbeciak, “Evolutionary algorithms for
timetable problems,” Annales UMCS Informatica AI, 2003, 115-125.
DOI= http://www.annales.umc.lublin.pl/

[11] A. Jamal, “A three stages approach of evolutionary algorithm and local-
search for solving hard- and soft constrained course scheduling
problem,” in Proceeding of the 11th Seminar on Intelligent Technology
and Its Application, Surabaya, Indonesia, 2010, paper no.118, p.324-328

[12] A. Jamal, “University course scheduling using the evolutionary
algorithm,” in Proceeding of International Conference on Soft
Computing, Intelligent System, and Information System, Bali,
Indonesia, 2010, republished in Jurnal Al-Azhar Indonesia Indonesia,
Seri Sains dan Teknologi, Vol. I, No. 1 Maret 2011

[13] A. Jamal, “Evaluation of modified scattered hill-climbing method and
evolutionary approach for course scheduling problem,” in Prooceedings
of Seminar Nasional Komputasi (SNAKOM 2012), Bandung

[14] C. Akkan and A. Gulcu, “A bi-criteria hybrid genetic algorithm with
robustness objective for the course timetabling problem,” in Proceedings
of the 11th International Confenference on Practice and Theory of
Automated Timetabling (PATAT-2016) – Udine, Italy, August 23–26,
2016, p. 451-456

[15] H. H. Hoos and T. Stutzle, “Stohastic local search: Foundations and
applications”, Morgan Kaufmann Publishers is an imprint of Elsevier,
2005

[16] H. H. Hoos, “Stochastic local search: Methods, models, applications”,
PhD Dissertation Technisen Universitat Darmstadt, Germany, 1998

http://www.annales.umc.lublin.pl/

