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Abstract—Course scheduling problem is a nondeterministic 

polynomial time-complete problem which is hard to solve. One of 

the popular method for solving the problem is the so-called local 

search algorithm family, which is basically search a better 

solution in the neighborhood of previously known potential 

solution iteratively. Local search technique has a weakness that it 

gets stuck easily in a local optimum or on a plateau. Various 

efforts have been done in many literatures to circumvent this 

weakness. Current work investigates an already improved 

scattered local search by augmenting randomly generated initial 

population of schedules in the local search algorithm. This 

algorithm will be compared to an originally population based 

genetic algorithm which is enhanced by letting local search 

technique on each individual schedule in every generation. The 

result has shown that the population based local search performs 

better than the hybrid genetic algorithm. 

Keywords—Course Scheduling, Optimization, local search 

Algorithms, Genetic Algorithms 

I.  INTRODUCTION 

Constructing a course schedule is one of the main challenge 
within a university that must be performed in every academic 



period. This problem is considered as a nondeterministic 
polynomial time-complete problem [1,2] which is quite 
difficult and time-consuming to solve. This is a multi-
dimensional and multi-constrained combinatorial optimization 
problem, that has been being a subject of extensive research 
efforts due to its complexity and wide application such as 
school timetables [3], exam scheduling [2] and course 
scheduling [1,4,5,6,7,8].  

Course scheduling process involves placements of many 
events in available time and space resources where initially 
specified constraints must be satisfied. In this study, an event 
could be a teaching class or a laboratory class where a 
combination of lecturers or instructors, student-groups and a 
course was designated beforehand. This type of course 
scheduling is called a curriculum based course scheduling or 
timetabling wherein a student-group is associated to the 
curriculums [9]. Scheduling problem could also include 
selections of courses that should be taught by which lecturer. 
Another type of scheduling involves every individual student 
who has enrolled for their courses. These last two types of 
course scheduling are not considered in the present study.  

There are two sets of predefined constraints which must be 
deliberated by the university course scheduling problem. The 
first set of constraints is named hard constraints which must not 
be violated to construct a valid or feasible schedule. The 
second set is soft constraints which are desired but not 
necessarily to be fulfilled. Hence, finding the valid or feasible 
schedule is merely a search problem rather than an 
optimization problem. However, fulfilling the soft constraints 
is a real optimization process in this study.  

Course scheduling problem has been solved by wide range 
type of algorithms. The most traditional one is a so-called 
graph coloring heuristic method whereby course are assigned 
to rooms and time-slots one by one in particular order. The 
second type falls into the local search algorithm family [8] 
whereby searching is carried out in neighborhood of a known 
state rather than exploring search space extensively. This type 
of algorithm is quite popular among the researcher who 
recommended enhanced variant of local search algorithm such 
as simulated annealing method [3,5], tabu search method [4] 
and hill-climbing search method [6].  

The last type of algorithm is based on population 
mechanism which starts with many different solutions and 
explores possible solution in wider search space. The most 
popular population based algorithms used to solve course 
scheduling are evolutionary algorithms [10], genetic algorithm 
[2,7,9], and harmony algorithm [1]. 

Due to two different criteria in the course scheduling 
problem, i.e. hard constraints that governs the search problem 
and soft constraints that constitutes the objective function of 
the optimization problem, various approaches can be found in 
the published research works. Combining these two set 
constraints with weight factors is the most frequently used 
approach, wherein the weight factor of soft constraint is just 
small fraction of hard constraint weight factor. Another popular 
approach is a staging method wherein a fulfilling of hard 
constraints in the first stage followed by an optimization 

process to gain as many as possible soft constraint satisfactions 
[7]. Some of the researchers used hybrid algorithms to tackle 
this staging method [9,11]. 

In the previous study, we had incorporated evolutionary 
algorithm (EA) [12] and the improved scattered hill-climbing 
search method (SHC) [6] into three stage method [11]. We had 
also compared these two algorithm separately, and proved that 
SHC is faster than EA in case SHC could find the feasible 
schedule [13]. Though, the probability of success in searching 
the feasible solution, i.e. the hard constraint free schedule is not 
more than 30% for SHC. This is caused by the nature of local 
search of SHC which is good in exploiting the possible solution 
in the neighborhood of a solution state. In contrary, the EA is 
good in exploring possible solution by generating new 
successor state by mutation and cross-over two parent states. 
Hence the probability of success in searching the feasible 
schedule is much better, but it needs much more iteration, i.e. 
number of generation because the nature of probabilistic 
process in EA. 

Knowing the above mentioned phenomenon, a number of 
SHC method from randomly generated initial states will be 
conducted to obtain higher probability of success in finding 
feasible schedules. In case of EA, the exploitation capability 
will be embedded in each member of population before the 
evolution process started in every new generation. 

II. SOLUTION METHOD FOR COURSE SCHEDULING PROBLEM 

A. Course Scheduling Problem 

The curriculum based course scheduling problem consist of 
the following entities: 

 a set of room {r1, r2, … rnoR} which has a seat capacity 
and specified as a lecture- or an interactive computer 
classroom, 

 a set of time-slot {t1, t2, … tnoT} wherein lecturers has 
preferences to teach, 

 a set of course {c1, c2, … cnoC} which is based on 
curriculum for each student group and may have 
multiple section (i.e. credit unit where one course 
section occupies more than one time-slot), 

 a set of lecturer {l1, l2, … lnoL} which has been assigned 
to specific course(s) and has a certain unavailable time-
slot and preference time-slot, 

 a set of student group {s1, s2, … snoS} with associated 
number of student from a specific program and same 
grade, 

 a set of events (i.e. classes) {e1, e2, … enoE}, to be 
scheduled in a certain number of time-slots and a room, 
is defined as combination of a specific course with 
assigned lecturer attended by certain number of student 
group. 

A course schedule is said to be feasible and valid when the 
following hard constraints are satisfied: 
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 all events have been assigned to a time-slot and a room 
(complete schedule), 

 no room is occupied by more than one event at the same 
time (room conflict), 

 no lecturer teaches more than one event at the same 
time (lecturer conflict), 

 no student group from the same program and same 
grade attends more than one event at the same time 
(student conflict), 

 number of attending students in the student group must 
not exceed the room capacity, 

 room has a feature (e.g. laboratory) required by the 
assigned course, 

 no lecturer teaches in time-slot which is unavailable for 
him/her, 

 an event with a multiple section course must be 
assigned in the same room contiguously (continue 
event). 

There are soft constraints that are preferably fulfilled to 

get a so-called optimum schedule. Some examples of these 

soft constraints are as follows: 

 a lecturer should be assigned in his/her preference time-
slot 

 a lecturer should not be assigned in his/her avoiding 
time-slot 

 a classroom should not be half empty, i.e. the number of 
attending student less than a half of room capacity 

 no student should be scheduled to sit more than three 
events on the same day 

 minimize scheduled events in the last time-slot of a day 

 morning class-hours are preferred than afternoon class-
hours 

 minimize unoccupied room between two occupied 
time-slots 

The first three of the above mentioned soft constraints will 
be taken into account in the presented work. 

B. Course Scheduling Model 

Course schedules are represented in a variety of models.  
References [1,2,7,10] uses a two dimensional matrix where 
rooms and timeslots are represented by row and column and 
each cell of matrix represents a single event. In the previously 
published works [6,11,12,13] we extended the dimensional 
matrix into three dimensional work by remodeling the one 
dimensional timeslot representing column into a two 
dimensional matrix where each row corresponds to day and 
column to hour. Another approach is direct representation, i.e. 
each gene is represented by a triple of event, room and time-
slot <ei, rj, tk> [8, 10]. 

The matrix model governs that the “room conflict” hard 
constraint is always fulfilled. However, generating the initial 
state is quite difficult when all events must be assigned into the 
cells taken into account multiple section event must be 
assigned in the same room contiguously. Therefore, the matrix 
model is not applicable for the present work since it requires 
randomly generated initial state for SHC. However, instead of 
using direct representation of triple model, we introduce tuple 
of two: 

 ei, f(rj, tk)  

where space (room)- and time resources are formulated as a 
single value function of resources f(rj, tk) whose value ranging 
from 1 to multiplication of noR and noT, i.e. number of rooms 
and timeslots, respectively. Generating random initial state of 
schedule is as easy as generating random number f in this range 
for each event ei. 

C. Scheduling Algorithm 

The original hill-climbing search method is a not 
population based technique. The fore knowledge that this kind 
of local search method gets stuck frequently in a local optimum 
as we had shown in [13], lead us to invoke a population of 
randomly generated schedules performing the scattered hill-
climbing search method. This population based scattered hill 
climbing search, shortly hereafter named a multiple scattered 
local search, will proceed for certain number of iterations until 
one or more individual schedules from the population become 
feasible and valid, i.e. none of hard constraints are violated. 
While the iteration is still in progress, course schedules that 
already feasible will further undergo in the second stage, 
searching for the optimum solution in the neighborhood of the 
found feasible state. 

Algorithm for a one-step single scattered hill-climbing 
search is shown in Fig. 1.  

 

Fig. 1. Scattered hill-climbing algortihm 

In the present work, this function is invoked for each 
schedule in the population. Note that the function of HC-SC-
penalty is a combination of hard constraint violation (penaltyhc) 
reduced by a small part of soft constraint fulfillment (scoresc) 

function SCATTERED-HILL-CLIMBING(state) 

     inputs :  state: a schedule 

     local variables: new, neighbor: a schedule 

  penalty: hard constraint violation 

returns:  new state which has less violation 

on hard constraint 

    penalty ← HC-SC-PENALTY(state) - 

    new ← state  

for i ← 1 to neighborhood size do 

       neighbor ← MUTATE(state) 

       if HC-SC-PENALTY(neighbor) ≤ penalty do 

new ← neighbor 

penalty ← HC-SC-PENALTY(neighbor) 

     end if 

    end for 

    return new 

 



as given in (2). The soft constraint fulfillment is an optional in 
this part of algorithm but it turns out that its existence is very 
significant to improve the effectiveness of the algorithm.  

 HC-SC-penalty weighthc * penaltyhcweightsc * scoresc

Any schedule that reached the zero violation of hard 
constraint, will further undergo a local search algorithm as 
depicted in Fig. 2 to maximize the fulfillment of soft 
constraints (SC-SCORE). The multiple scattered local search 
iteration will stop when a specified number of schedules 
become feasible or maximum iteration is reached. 

Performing the scattered local search in a population 
scheme rather than a single schedule gives more explorative 
capability in this local search method, of course at cost of extra 
computation time. To gain a better view whether this extra cost 
worthy, we will compare the performance of MSLS (multiple 
scattered local search) with the evolutionary algorithm [12] 
using the same two tuple model. We add also some 
exploitation booster by letting each chromosome at every new 
generation in the evolution process does the same single 
scattered hill-climbing search from Fig. 1. This addition of hill-
climbing search into the standard genetic algorithm is also used 
in [14] to minimize two objective functions, i.e. soft constraint 
and robustness.  

 

Fig. 2. Scattered local search around the feasible schedule algortihm 

Comparing with the previous work in [12], the algorithm in 
the present work can do the real genetic mechanism, namely 
cross-over. Because of the two tuple model from Eq. 1, the 
chromosome will form just like a common integer 
chromosome, as shown in Fig. 3. All events are always taken in 
the process, satisfy the complete schedule of hard constraint, 
hence this will not be destroyed by cross-over mechanism as it 
was in the three dimensional matrix model we used in [12,13]. 
The present evolutionary algorithm will be called hybrid 
genetic algorithm (HGA). 

 

Fig. 3. Course schedule chromosome 

where 

 finumber of space-time resources  

Tournament of 5 is used for selection of parent 
chromosome for crossover mechanism. Before parent selection, 
elitism mechanism is done by using truncated selection 
scheme. The selection is performed based on violation of hard 
constraint and fulfillment of soft constraint, combined using 
weight factor as given in (2). 

Elite chromosomes that reach zero hard constraint 
violation, i.e. feasible schedule, will be further proceeded in the 
second phase performing local search optimization related to 
the soft constraints by keeping the zero violation of hard 
constraint as given in Fig. 2. 

III. RESULTS AND DISCUSSION 

Computation complexity of one iteration for these two 
different algorithms, i.e. multiple scattered local search 
(MSLS) and hybrid genetic algorithm (HGA) will be discussed 
first. The complexity of evolutionary algorithm is more than 
two times of a single scattered hill-climbing algorithm when 
the population size of evolutionary algorithm and 
neighborhood size of hill-climbing are the same [13]. In the 
present work, the complexity of one iteration for MSLS and 
HGA is in the same order if the same population– and 
neighborhood size are used in both algorithms. Hence, the 
number of iteration is the only extent of computation 
complexity when we compare MSLS and HGA with the same 
size of population and neighbors. 

The probabilistic nature of both algorithms makes the 
behavior of algorithm difficult to analyze. Reference [15, 16] 
introduced an empirical approach to analyze the behavior of 
non-deterministic algorithm by constructing run time 
distribution (RTD) and run length distribution (RLD). In 
practice, this empirical RTD and RLD are determined by 
running the respective algorithm for a number times on a given 
problem instance up to some cut-off time or iteration and then 
for each successful run, recording the required time or the 
required number of iteration to find a solution, respectively for 
RTD or RLD. For this study, we use two small sets of 
curriculum for experiment as given in Table I.   

TABLE I.  TWO SMALL SETS OF CURRICULUM DATA 

Specification I II 

Number of events 25 51 

Number of instructors 14 23 

Number of class rooms 2 4 

Number of student groups 4 7 

Number of events hour 67 138 

Available time slots 80 160 
…. 

…. 
ei 

f(rj, tk) 

1 

f1 

noE 

fnoE 

2 

f2 

function LOCAL-SEARCH-OPTIMIZATION(state) 

     inputs :  state: a feasible schedule 

     local variables: new, neighbor: a schedule 

  score: soft constraint fulfillment 

returns:  new state which has more 

fulfillment on soft constraint 

    score ← SC-SCORE(state) 

    new ← state  

for i ← 1 to neighborhood size do 

       neighbor ← MUTATE(state) 

       if SC-SCORE (neighbor) > score and  

             HC-PENALTY(neighbor) = 0 do 

new ← neighbor 

score ← SC- SCORE (neighbor) 

     end if 

    end for 

    return new 

 



For the first test, we run both algorithms to find a feasible 
schedule on the same curriculum data I by setting a cut-off 
iteration of 1000. The computational parameter size, i.e. 
population- and neighborhood size for both algorithms are set 
to be equal. The resulting RTD and RLD are given in Fig. 4 
and Fig. 5. That RTD has similar shape as RLD proves the time 
consumed for one iteration by both algorithms with the same 
computational size parameters are equal. Furthermore, the test 
results have shown that MSLS yields higher probabilities of 
success for all range of iterations. This outcome is very 
contradictive with the previous comparing study between 
traditional GA and the single SHC wherein the first algorithm 
is more superior in the probability behavior [12,13].  

 

Fig. 4. RTD for MSLS and HGA with the same computational size 

parameter, i.e. population size=40 and neighborhood size =50 

 

Fig. 5. RLD for MSLS and HGA with the same computational size 

parameter, i.e. population size=40 and neighborhood size =50 

Both computational size parameters give the extent of 
randomization on the algorithms but for different objectives. 
While the number of schedule population aims to add more 
exploration power in a wider search area, the neighborhood 
size of scattered schedules yields more exploitation random 
capability in depth. 

Effect of these two computational parameter sizes are 
studied. Higher neighborhood size yields better probability in 
term of iterations as shown in RLD from Fig. 6. However, in 
term of run time, this parameter has no effect since this 
neighborhood size is inversely proportional to run time as 
depicted in RTD from Fig.7.  

Effect of the population sizes are presented in Fig. 8 and 
Fig. 9. Note that when only one schedule is considered in the 
population, namely Sc=1, MSLS becomes a scattered local 
search as in the previous published works [6,13]. The 
probability of success for the scattered local search here is not 
more than 50%. Probability in the iteration distribution is 
getting better when the population size is larger, though in run 
time distribution probability curve shifts right to slower region 
of computing run time. In spite of this, it is proven that a 
probability of 99% success for MSLS needs a sufficient 
population size. 

 

Fig. 6. RLD for MSLS with the same population size=40 and variation of 

neighborhood size (nN= 5, 25, 50) 

 

Fig. 7. RTD for MSLS with the same population size=40 and variation of 

neighborhood size (nN= 5, 25, 50) 

Results given in Fig. 8 and Fig. 9 are obtained by running 
MSLS on curriculum data II for 200 times up to cut-off 5000 
iterations. The problem of curriculum data II is two times 
bigger than data I. Doubling the problem size requires at least 
five times number of iterations and eight times longer run time 
for a same level of probability of success. 

Beside the size parameters, i.e. population- and 
neighborhood size, MSLS has also two weight factors to be set. 
In searching for feasible schedules, penalty function that 
includes small contribution of soft constraint satisfaction, i.e. 
0.1 SC + 0.9 HC yields better probability curve than 100% HC 
in the penalty function as shown in Fig. 10. Nevertheless, 



excessive contribution of soft constraint satisfaction will shift 
RTD curve slightly to slower region of computation time. 

RTD shown in Fig. 10 is obtained from 200 test runs on 
curriculum data I up to cut-off 100 iterations or four feasible 
schedules were found. It is interesting to note here that MSLS 
is capable to seek a number of valid schedules up to about 20% 
of population size without too much extra iterations or 
computation time. RLD from this test is not presented because 
it has similar shape with RTD since run time required for one 
iteration is equal in this particular case for every probability 
curve in Fig. 10. 

 

Fig. 8. RLD for MSLS with the same neighborhood size =50 and variation of 

population size (Sc= 1, 5, 40) 

 

Fig. 9. RTD for MSLS with the same neighborhood size =50 and variation of 

population size (Sc= 1, 5, 40) 

 

Fig. 10. RTD for MSLS with the same neighborhood size =50 and population 

size=40,  varying weight factor in penalty function in (2)  

For the last test, we evaluate effect of neighborhood size on 
the probabilistic of success for HGA. The test results are given 
again in Fig. 11 and Fig. 12. If neighborhood size n=0, HGA 
becomes a traditional GA, and the test result shows that this 
GA is the worst among HGA with respect to RTD and RLD, 
even for HGA with very small neighborhood n=2. Similar to 
the case for MSLS, effect of neighborhood size only significant 
on RLD, not on RTD with the same reason. 

 

Fig. 11. RLD for HGA with the same population size=40 and variation of 

neighborhood size (n= 0, 2, 4, 50) 

 

Fig. 12. RTD for HGA with the same population size=40 and variation of 

neighborhood size (n= 0, 2, 4, 50) 

IV. CONCLUSIONS  

We have presented a multiple scattered local search 
algorithm, which is a population based version of randomized 
hill-climbing algorithm. Compared to the original hill-climbing 
search, the algorithm incorporates stochastic behavior in two 
different parts, namely during the improvement step in the 
neighborhood region and in the constructing of initial 
population. states. The probabilistic behavior of the algorithm 
was evaluated using empirical approaches by constructing run 
time distribution and run length distribution. The test results 
have shown that the probabilistic of success run for the 



presented algorithm is better than the original scattered local 
search and also much better than the hybrid genetic algorithm 
for the same problem instances. 

Another advantage of the multiple scattered local search 
which is still to be exploited, is a strong parallelism inherent in 
the algorithm. Taking advantage of this parallelism by 
implementing the algorithm in parallel processing is practically 
necessary to solve the real world course scheduling problem 
whose problem size much bigger than in the presented work. 
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