Frontier in Plant Science 2012

by Mark Finne

Submission date: 26-Jul-2020 01:32AM (UTC-0500)
Submission ID: 1362182343

File name: Frontier_in_Plant_Science_2012.pdf (2.53M)
Word count: 8864

Character count: 48369



ﬁVIEW ARTICLE

fromtiers in S %
PLANT SCIENCE doi 10 aEBApla 201 0056

Phospholipases and the network of auxin signal
transduction with ABP1 and TIR1 as two receptors: a
comprehensive and provocative model

Giinther F. E. Scherer*, Corinna Labusch and Yunus Effendi

Labaratory Molekulare Ertragsphysiologie, Institut flir Zierpflanzenbau und Gehdlzwissenschaften, Leibniz Universitat Hannover, Hannaver, Germany

Edited by:

XueminWang, University of
Missoun-5t Louis and Donald
Danforth Flant Science Center, USA

Reviewed by:

Stephen B. Ryu, Korea Research
Institute of Bioscience and
Biotechnology, South Korea

Kirk L. Fappan, Edenspace Systems
Corporation, USA

*Comespondence:

Ginther £ E. Scherer, Laboratory
Moalekulare Ertragsphysiologie,
Institut fir Zierpfianzenbau und
Gehdlzwissenschaften, Leibniz

ﬁree types of phospholipases, phospholipase D, secreted phospholipase Az, and patatin-
related phospholipase A (pPLA) have functions in auxin signal transduction. Potential linkage
to auxin receptors ABP1 orTIR1, their rapid activation or post-translational activation mech-
anisms, and downstream functions regulated by these phospholipases is reviewed and
discussed. Only for pPLA allaspects are known at least to some detail. Evidence is gathered
that all these signal reactions are located in the cytosol and seem to merge on regulation
of PIN-catalyzed auxin efflux transport proteins. As a consequence, auxin concentration in
the nucleus is also affected and this regulates the E3 activity of this auxin receptor. We
showed that ABP1, PIN2, and pPLA, all outside the nucleus, have an impact on regulation
of auxin-induced genes within 30 min. We propose that regulation of PIN protein activities
and of auxin efflux transport are the means to coordinate ABP1 and TIR1 activity and that
no physical contact between components of the ABP1-triggered cytosolic pathways and

Universitat Hannover, Herrenhauser
Str. 2, 0304189 Hannover, Germany.
e-mail: scherer@zier.uni-hannover.de

INTRODUCTION

PHOSPHOLIPASES IN PLANTS

Phospholipases hydrolyze phospholipids. They are categorized by
the bonds they hydrolyze, which result in the products diacylglyc-
erol and phosphorylated headgroup by phospholipase C (PLC),
and phosphatidic acid (PA) and headgroup by phospholipase D
(PLD; Meijer and Munnik, 2003; Li et al, 2009). A phospholi-
pase A (PLA) is an acyl hydrolase which hydrolyzes phospholipids
her at the hydroxyl at sn-1 position (phospholipase A}, PLA,) or
at the sn-2 position (phospholipase A;; PLA;). Structurally quite
different enzymes show PLA activity. PLA enzymes in plants are
the small secreted phospholipases Az (sPLA3; 14kDa), the soluble
or secreted patatin-related phospholipases A (pPLA; 45 kDa), and
the lipase-like PLA; (Scherer et al., 2010).

WHAT IS SIGNAL TRANSDUCTION?

Signals activate networks of biochemical reactions typically
located in the cytosol (Figure 1). This is initiated by receptors
which specifically recognize the signal molecules or absorb pho-
tons of a discrete energy (Figure 1). The type of enzymes partici-
pating in such networks is similar if not homologous in eukaryotic
organisms, which means that generalizations can be drawn. Recep-
tor activation first triggers the generation of second messengers
by the activation of suitable enzymes within seconds or minutes.
‘Whereas in higher animals G-protein-coupled receptors are most
abundant, in plants there is only one G-alpha subunit and the true
G-protein-coupled receptor has not been identified (Jones and
Assmann, 2004). The most abundant type of receptor in plants is

TIR1-triggered nuclear pathways of signaling is necessary to perform this.
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the receptor kinase. Among the enzymes generating second mes-
sengers in plants there are also phospholipases which generate
phospholipid breakdown products as second messengers which,
in plants, are still primarily potential second messengers because
the exact identification of their downstream effectors often is still
incomplete. Many other second messengers in plants have been
established besides those generated by phospholipases. The estab-
lished ones are cytosolic calcium, reactive oxygen species (ROS),
nitric oxide (NQ),cGMP, and cADPR, all of which are second mes-
sengers for plants. Furthermore, signal transduction mechanisms
and networks include a number of characteristic enzymes, most
prominently protein kinases and protein phosphatases. Another
important principle in plant signal transduction is regulated prote-
olysis of critical protein by the proteasome. These critical proteins,
which are often negatively acting transduction factors, are ubig-
uitinated by E; ligases, and ubiquitinated proteins are hydrolyzed
in the proteasome. Several plant receptors are coupled to or inte-
grated in the ubiquitination and proteolysis machinery (Dreher
and Callis, 2007; Stone and Callis, 2007).

All such mechanisms eventually aim at changing the activity
of transcription factors by a multitude of different mechanisms
(Schiitze et al., 2008). These activity changes in transcription fac-
tors then induce long-lasting changes in gene expression and pro-
tein activities, providing new functions, and eliminate or decrease
previous functions in a given tissue. This can usually be described
as a new physiological response or a new status, which then
becomes apparent as a visible change in the plant’s morphology or
development.
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FIGURE 1 | The general model of signal transduction.

It is important to realize what the time course of a biological
response to a signal is. This was recently compared and evaluated
for auxin signal transduction and the two main auxin recep-
tors, ABP1 and TIR1 (Scherer, 2011). Elongation growth is the
most rapid visible auxin response, starting with a lag phase of
10 min. Auxin-activated genes, at the earliest, may contribute after
8-10 min by synthesis of new protein to this most rapid “macro-
scopic” physiological response so that TIR1 can not be the receptor
for such rapid responses. Within this first time span, however, a
considerable number of rapid auxin responses have already been
described, including activation of PLA and PLD activity. These
reactions, starting with hormone binding to the receptor and prior
to transcription comprise, by commonly accepted definition, the
biochemical signal transduction (Figure 1). TIR1 provides the
shortest possible signal transduction since it binds auxin as a
receptor and employs its E; activity to down-regulate Aux/TAA
transcription factors by inducing hydrolysis in the proteasome
hn];uilis and Estelle, 2008). Even though an influence on the
transcription of early auxin-induced genes as early as 2-5 min can
be found (Ballas et al., 1993; Abel et al., 1994) these early auxin-
induced genes are unlikely to generate direct physiological changes
because they are transcription factors or they regulate hormone
concentration. Moreover, often the time span for transcriptional
increase of proteins is longer (Calderon-Villalobos et al., 2006).
However, ABP1 and pPLA also influences early auxin-regulated
genes at least as early as after 30 min (Effendi et al,, 2011}, so the
question arises how the actions of the two receptors may meet or
cooperate.

REVIEW

PHOSPHOLIPASES IN AUXIN SIGNAL TRANSDUCTION

Several phospholipases have been implicated in auxin signaling:
PLD,sPLA>, and pPLA. Data are still incomplete regarding mech-
anistic models and how and whether they can be activated by
a receptor-driven post-translational mechanism. Activation can
also be achieved by transcriptional/translational increase of activ-
ity which, however, is difficult to imagine happening any faster
than within 10 min. Thus, timing is always an important aspect
when analyzing signal transduction.

PHOSPHOLIPASE D AND AUXIN FUNCTIONS

Phospholipases D are a gene family of nine genes in Arabidopsis,
all of which seem to be cytosolic enzymes (Li et al., 2009). Auxin
activation within 1 min of PLD activity led to PA accumulation
(Lanteri et al., 2008). The relevant PLD isoform(s) have not yet
been identified nor the relevant auxin receptor. This PLD activa-
tion was associated with equally rapid NO biosynthesis (Lanteri
etal., 2008). The rapidity of activation kinetics eliminates TIR1 as

the relevant receptor and suggests that ABP1 could be the recep-
tor without proving this directly. For comparison, in abiotic stress
responses, rapid activation kinetics of PLD within 2 min are also
known (van der Luit et al., 2000; den Hartog et al., 2003; de Jong
et al.,, 2004). Salicylic acid as another biotic signal leads to rapid
PLD activation within 15 min but further details remain unknown
(Krinke et al., 2009). Previously, PLD inactivation by G,gpp and
an ABA receptor postulated to be a G-protein-coupled receptor
was described (Zhao and Wang, 2004; Mishra et al., 2006). Thus,
it seems possible that PLD could be receptor-activated in a post-
translational mode even though the receptors for salicylic acid and
auxin for the PLD pathway remain unknown at this time.

Interestingly, lipids activate PLD (Li et al., 2009). The isoform
PLD4 is activated by oleic acid (Wang and Wang, 2001), and pM
Ca®* and PIP3 activates the isoforms PLDP1, PLDy1, PLDv2, and
PLDS (Liet al, 2009). Conceivably, the enzymes generating oleic
acid and PIP, and calcium increases could be activated/ inacti-
vated by signals, e.g., stress signals (van der Luit et al., 20005 den
Hartog et al., 2003; de Jong et al., 2004). PIP: biosynthesis is the
end product of phosphorylation by phosphatidylinositide kinases,
but how these could be linked to signals or to auxin signaling in
particular is still unknown.

So, there is no experimental evidence that activation of a pPLA
{or sSPLA;) by auxin could provide oleic acid to PLD but it is con-
ceivably a possibility. This would constitute a second pathway to
activate PLD’s in addition to calcium activation of PLD. At this
point, the available evidence is too sketchy to identify a recep-
tor for a clear activation pathway for PLD by auxin, but rapidity
of activation indicates a post-translational activation mechanism
(Figure 2).

Liand Xue (2007) investigated PLD{2 mutants and found the
enzyme is required for auxin responses. Here, a rapid time course
of the enzymatic reaction in response to auxin was not described.
Wesicle traffic is disturbed in knockout plants while vesicle flow and
PIN cycling are slowed. Auxin sensitivity is decreased in knockout
plants, root gravitropism is decreased, and hypocotyl elongation
at 29°C is decreased as well. In overexpressing plants, the reverse
phenotype is observed. The total absence of one PLD isoform
might change critical lipid pools affecting membrane-associated
functions so that a constant lack of input of this enzymatic activ-
ity, perhaps in only a few compartments, can possibly evoke such
phenotypes. This means that certain lipids do indeed act as second
messengers. A link to a receptor is not even necessary for PLDg2
to influence general membrane properties. Regulatory input may
proceed by transcription of PLD(2, triggered by endogenous or
exogenous cues. The absence of a critical activity which disturbs
lipid pools and membrane functions such as vesicle flow, could be
sufficient (however, see below).

A central theme in signal transduction is calcium. There-
fore, and because there is fragmentary evidence for this, we have
included a “Ca®*/PLD module” in conjunction with the evidence
for calcium in auxin signal transduction in our scheme ( Figure 2),
not excluding other calcium functions in auxin signaling (Zhang
et al., 2011). Activation by auxin of calcium influx was shown
(Shishova et al., 2007; Monshausen et al,, 2011). A calcium chan-
nel was hypothesized to be an interactor for ABP1 (Shishova
and Lindberg, 2010) so that such a channel could even have the
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FIGURE 2 | Model of functions of phospholipases in auxin signal
transduction. Auxin perception occurs at two receptors, TIR1 (bottom
halfl and ABP1 itop half). In the upper half, ABP1 is the relevant receptor
and reactions are assembled which oceur faster than in 10 min, like the
activation of phospholipase A and D. Other cytosolic components are also
assembled in this cytosolic signal network even though some of them
hypothetically where a linkage is only suggested. One important output of
the cytosolic network is regulation of PIN protein activity, most likely by
shifting the balance between endocytosis and exocytosis and for shifting
the subcellular localization of PIN proteins. The protein kinase PINOID is
the rmain regulatory protein for PINT, PINZ, and PIN3. Regulation of PING
by protein kinase or other cytosolic factors is unknown. How the pPLA
hydrolysis products, fatty acids and lysolipids transmit their activity to
other components is hypothetical. However, if pPLA activities are lacking,
auxin functions are decreased or interrupted. Auxin perception occurs at
the receptor TIR1 in the nucleus which leads to degradation of Aux/lA4

i1

ElBteins that act as repressors of ARF transcription factors. This initiates
transcription of early auxin-induced genes. Because maost early
auxin-induced gene products do not carry out direct physiological reactions
but rather regulate transcription and hormone concentrations gene
products with other physiological functions need at least 10 min to
become effective for physiclogical changes (Scherer, 2011). ABPT,
AUXIN-BINDIMNG-PROTEINT; ARF, AUXIN RESPONSE FACTOR,; Auxflib,
auxinfindoleacetic acid proteins, COPK, calcium-dependent protein kinase;
CK2, casein kinase2; CPK3, calciurm-dependent kinase3; "docking”
protein, hypothetical transmembrane protein and co-receptor to ABP1;
LFX, lysolipid;, PA, phosphatidic acid; PDE1, phospholipid-dependent
kinasel; PIN, pinformed, auxin efflux transporter; PINOID, protein kinase;
pPLA, patatin-related phospholipase A; pPLA-, patatin-related
phospholipase Ad; PLD, phospholipase D; sPLA:, secreted phosphaolipase
A TIRT/AFB, TRANSPORTINHIBITOR-RESISTANTT and homologous
AUXIN UP-REGULATED FBOX PROTEIN.

role of the hypothetical transmembrane protein (Klimbt, 1990).
However, channel regulation can also be achieved by different
mechanisms, and we favor a receptor kinase as a likely candidate
for the hypothetical transmembrane protein (Figure 2).

A potential upstream integrator for PLD function in auxin sig-
naling could be calcium and a downstream integrator could be
PINOID, the kinase which phosphorylates PIN proteins and acti-
vates auxin transport (Dhonukshe etal,, 2010; Huang et al., 2010).
This is depicted as a “Ca®*/PLD module.” PLD can be assumed to
be activated by calcium, which is an activator for isoforms PLDf1,
PLDyl, PLDy2, and PLD% at pM concentrations. The effect of
calcium on PLDE2 has not been determined (Li et al., 2009).
PA, the hydrolysis product of PLD, was shown to activate the 3-
phosphoinositide-dependent protein kinase PDK1, which binds to
a hydrophobic PDKI1-interacting C-terminal domain in PINOID
and phosphorylates PINOID {Zegzouti et al., 2006): This trans-
phosphorylation increases autophosphorylation of PINOID, lead-
ing to the activation of PINOID. Activation of PINOID leads to
phosphorylation of PIN proteins which, in turn, increases the

basal polarity of PIN proteins and increases the efficiency of auxin
transport (Friml et al., 2004; Michniewicz et al., 2007). Phospho-
rylation of PIN1 and PIN2 by PINOID have been shown and
phosphorylation sites identified (Dhonukshe et al., 2010; Huang
et al., 2010). This potential pathway to influence several auxin
transport-dependent functions by PLD¢2 was already suggested
by Liand Xue (2007); only the bridge to calcium is built here.

In summary, while a function of Ca?* and PLD in auxin sig-
naling is apparent, a future model will require identification of
receptor(s) and auxin-relevant functions for particular isoforms,
e.g., by investigating mutants. The only PLD isoform investigated
for auxin functions is PLD¢2 but there the relevant receptor is not
known (Lee et al., 2010).

FUNCTIONS OF sPLA; IN AUXIN SIGNAL TRANSDUCTION

The data on functions of sPLA; in auxin physiology are mostly
derived from investigations on knockout and overexpressor
mutants. Experimental observations are made after gravitropic
stimulation after hours or after at least several days of seedling
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development so that functional linkage to a receptor is unclear. It
has been shown that sPLA>a knockouts showed reduced elonga-
tion of stems and petioles and both knockouts and overexpressors
were delayed in gravitropic bending of hypocotyls (Lee et al,
2003). In a more recent investigation, the phenotype of sPLA>a
mutants suggests that they are involved in PIN protein cycling in
roots and, thus, auxin transport regulation (Lee et al., 2010). It
seems quite possible that the metabolites generated by sPLA;q,
free fatty acids (FFAs) and/or lysophospholipids, exert effects on
membrane vesicle transport-related functions which are the basis
for auxin transport.

Time courses of activation of sPLA;a activity by auxin are
not available. The transcriptional increase of RNA after 60 min
by auxin has been reported (Lee et al., 2003), In fact, it is diffi-
cult to imagine how the secreted sPLA: enzymes can be activated
by a receptor on the extracytosolic side of membranes in Golgi
dictyosomes (Lee et al,, 2010). Even though ABP1 is also located
on the extracytosolic side of ER and plasma membrane, there is
no signal transmission paradigm known from the literature to
suggest post-translational activation of an extracytosolic enzyme.
Unfortunately, no enzyme inhibitors are available which can dis-
tinguish between sPLA; and pPLA and could be used to test
functions depending on either one. Summing up, while defects
in auxin physiology in sPLA; mutants were described a receptor
cannot be pointed out and transcription/translation seems to be
the mechanism of sPLA; activation.

SPHINGOLIPIDS AND AUXIN FUNCTIONS

Other work on sphingolipid biosynthesis shows that a decrease to
very long chain fatty acid levels — derived from sphingolipids —
can affect several auxin functions, in particular, auxin-dependent
inhibition of lateral root emergence and an abnormal patterning
of the embryo apex, which leads to defective cotyledon organo-
genesis (Roudier et al, 2010; Markham et al, 2011). Defective
organogenesis is thought to be associated with the mistargeting
of the auxin efflux carrier PIN1 in specific cells, resulting in local
alterationof polar auxin distribution. This is remedied by the addi-
tion of very long chain fatty acids. If very long chain fatty acids or
(sphingo)lipids containing them are necessary for correct auxin
transport, then the absence of the relevant enzyme in biosynthe-
sis or hydrolysis is enough to disturb auxin functions. A link to a
receptor is not necessary and not known here. Furthermore, regu-
lation of expression of such enzymes by (other) signals could have
an impact on phenotypes. Because of the many open questions no
gene/enzyme of sphingolipid metabolism is added to Figure 2.

PATATIN-RELATED PHOSPHOLIPASES A IN AUXIN SIGNAL
TRANSDUCTION
The third group of phospholipases in auxin signal transduction are
the pPLA. In contrast to PLD or sPLA:, receptor-triggered rapid
activation and a post-translational activation mechanism can be
suggested for pPLA’, and defects in auxin-related functions in
mutants of single isoforms were found. Receptor coupling, post-
translational activation, and linkage to downstream functions are
the hallmark of signal transduction enzymes.

The first report on auxin activating a non-identified PLA activ-
ity was probably on pPLA activation (Scherer and André, 1989).

Later, by using selective inhibitors in physiological and tran-
scriptional experiments (Scherer and Arnold, 1997; Paul et al,
1998; Holk et al., 2002; Scherer et al., 2007) and characteriza-
tion of knockout mutants (Rietz et al., 2010}, we showed that the
auxin-activated PLA activity was a pPLA activity of one or more
isoforms.

The rapid activation kinetics of pPLA activation within 3 min
suggests that ABP1 is the relevant receptor (Scherer, 2011). The

discrimination between 2,3-D and 2,4-D of pPLA activation
(Scherer and André, 1989; Paul et al., 1998) is reflected in the bind-
ing properties with low discrimination of ABP1 to these auxins
(Ray, 1977).

In order to better understand the potential link between pPLA
and the two receptors ABP1 and TIR1, we chose regulation of
early auxin genes and the artificial auxin-activated gene DR5:GUS
as a response to distinguish between the two receptors (Scherer
et al., 2007). Blocking pPLA activity with two different enzyme
inhibitors blocked both auxin-included DR5::GUS expression and
early auxin-induced genes. TIR1-directed hydrolytic degradation
of IAA17-luciferase hybrid protein, however, was not affected by
the inhibitors. This allowed us to conclude that TIR1 was not
a receptor for pPLA activation and ABP1 was the more likely
receptor relevant for pPLA activation.

COORDINATION OF TWO AUXIN RECEPTORS, ABP1 AND
TIR1, BY PIN PROTEINS CATALYZING AUXIN EFFLUX
TRANSPORT

TESTING RAPID AUXIN-INDUCED GENE REGULATION IN abp1 AND
OTHER MUTANTS INDICATES ABP1AS RECEPTOR ALSO FOR GENE
REGULATION

The need to decide which receptor could initiate rapid responses
has led to investigations on ABP1. Whereas the homozygous abpl
knockout plants are embryo-lethal (Chen et al., 2001), heterozy-
gous plants are viable and have a phenotype clearly deficient in
physiological auxin responses. An even clearer indicator was, that
auxin-induced gene regulation is disabled as soon as after 30 min
of auxinapplication in abpl/4 (Effendiet al., 2011). Our data show
that ABP1 regulates early auxin-induced genes just as TIR1 does.
Furthermore, we have found that the pin2/eir] mutant showed
a high percentage of misregulation of early auxin-regulated genes
including PIN genes (Effendiand Scherer, 2011) inasmuch as they
are regulated by auxin (Vieten et al., 2005). Using quite different
techniques, two other groups have shown in molecular detail that
PIN1 and PIN2 protein activity is regulated by ABP1 but not by
TIRI within minutes by the slowing of endocytosis (Robert et al,
2010; Xu et al,, 2010).

The main questions remain: if ABP1 and PIN2 (and also TIR1
as a well-known regulator of auxin-induced genes) have a rapidly
established influence onauxingeneregulation, then how can pPLA
be integrated in this? We tested this, quite similarly as before,
by testing early auxin-induced gene regulation in pPLA knock-
out plants of the genes pPLAIly, pPLAIR, and pPLAIIe (Figure 3;
methods as in Effendi et al., 2011). Of the seven genes tested, two
to five genes were not up-regulated within 30 min. The affected
number of misregulated genes is less than in abpl/+ or pin2/eirl
mutants, but is considerable nonetheless. Along with the data on
auxin-related phenotypes of these three knockout mutants (Rietz
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etal., 2010), this provides a strong argument that pPLA is involved
in auxin signal transduction. These pPLA-II genes themselves were
not regulated by auxin (not shown).

A hypothetical picture emerges where calcium-dependent
processes can be linked to PLD to one “module” and a second
“module” where pPLA is an upstream component, associated with
ABP1 as a receptor. TIR1 is viewed as a third and “nuclear module”
regulated by auxin concentration. Thus our model emphasizes the
regulation of PIN efflux-transport protein-activity by ABP1, which
in turn will regulate cytosolic and/or nuclear auxin concentration,
to which TIR1 reacts accordingly. It would be no surprise if other
auxin transporters, e.g., the AUX1/LAX influx transporters or PGB
auxin efflux transporters, will have to be welded into this concept.

Auxin efflux transport and hormone concentration regulation
coupled to two receptors is the central idea of our new concept for
auxin signal transduction.

IN A TWO RECEPTOR CDNCEPTEGUMTIDN OF AUXIN
CONCENTRATION BY PIN PROTEINS IS THE PRINCIPLE THAT COUPLES
AND COORDINATES ABP1 AND TIR1

If our model of coupling ABP1 to gene regulationexecuted by TIR1
iscorrect, this means that PIN activities are probably first regulated
at the protein level, and then some of them later at the transcrip-
tional level. Phosphorylation by the AGC3 kinases, among which
PINOID seems to be the most important, leads to endocytosis
inhibition, so more PIN protein remains at the plasma membrane
(Dhonukshe et al., 2010; Huang etal., 2010) leading to rapid stim-
ulation of auxin efflux (Paciorek et al., 2005). This mechanism
also establishes a higher polarity of PIN localization at the basal or
apical end or laterally (Friml et al., 2004; Michniewicz et al., 2007;
Ding etal, 20115 Rakusovid etal,, 2011) and establishes polarity on
an organ basis (Friml et al., 2003; Michniewicz et al., 2007). Our
model refers only to the single cell situation where fewer PIN pro-
teins — after auxin application — in the plasma membrane lead to
lower efflux activity and the consequently higher cytosolic auxin
concentration, thus exerting control in the nucleus of expression
of TIR1-dependent genes. The multicellular effect of streamlined
polarity of PIN proteins in tissues leading, for instance, to lat-
eral root formation, needs coordination of many more reactions.
Ectopic expression of PIN genes in root hairs showed that PIN1,
PIN2, PIN3, and PINS (Ganguly et al, 2010) are the most actively
regulated proteins in their root hair-growth test. As mentioned,
PIN8 is probably not phosphorylated by AGC3 kinase so signal
input into PIN8 regulation remains unclear. PIN2 and PIN3 can
changetheir cellular polarity, PIN3within 3 min (Frimletal., 2002;
Harrison and Masson, 2008) which is the basis of tissue responses
relying on polarity, like phototropism and gravitropism. Direct
regulation of transport activity of PIN proteins as a possibility has
not been reported.

PIN5 is different from all other PIN proteins. It is localized
in the perinuclear ER (Mravec et al, 2009) and its expression is
down-regulated by auxin (Mravec et al., 2009; Effendi and Scherer,
2011). PINS is expressed both in the ER and the plasma mem-
brane (Mravec et al., 2009; Ganguly et al., 2010). Mravec et al.
(2009) postulated that PIN5 concentrates auxin in the nucleus
by an unknown mechanism; the first experimental evidence for
this hypothesis was provided by Ganguly et al. (2010) in their

root-hair over-expression assay. PIN5 and PIN8 do not posses the
long cytosolic loop which carries the phosphorylation sites for
the AGC kinases (Huang et al., 2010). The function of PIN5 may
be to increase auxin concentration in the nucleus (Mravec et al.,
2009), but the mode of regulatory input is currently unclear, and
the question how an auxin gradient is kept up against the nuclear
pores is — literally — open.

After several hours, auxin-induced changes in expression of
most PIN proteins complicate the interpretation (Vieten et al.,
2005). In contrast, the effect on transport was detectable as rapidly
as after 4min (Paciorek et al., 2005, Figure 20), which is in line
both with our predictions in our model in Figure 2 and the previ-
ously suggested model (Effendi et al., 2011). Therefore, only rapid
methods or measurements will show the initial response pattern,
later it may be obscured by additional responses such as transcrip-
tion (Vieten et al., 2005; Braun et al., 2008). Our conclusion is that
ABPI and these pPLA-II genes are in the same signal transduction
pathway because of the rapid effects on auxin-induced genes in
abp/+ and ppla-II mutants.

UPSTREAM ACTIVATORS AND DOWNSTREAM
CONSEQUENCES OF pPLA ACTIVATION BY AUXIN

PROTEIN KINASES AND OTHER PROTEINS POTENTIAL UPSTREAM
ACTIVATORS OF pPLA

A potential molecular mechanism to activate group 1T pPLA
enzymes by phosphorylation at the termini has been shown (Rietz
et al., 2010). So far, three group II enzymes have been investi-
gated and all were phosphorylated by CPKs. Two, pPLA-1I§ and
pPLA-IIg, were activated by phosphorylation by CPK3. Auxin-
induced calcium influx could activate CPK3 (Monshausen et al.,
2011). When we inspected the C-termini of all 10 pPLA isoforms,
several potential phosphorylation sites were suggested which,
however, appear to be different for groups II and III enzymes
(Figure 4). Among amino acids of conserved serines in the C-
terminus of group IT enzymes, lysines and arginines are abundant
(relative position 30 and 40 in Figure 4), which could fit to the
substrate preferences of basophilic CPKs (de la Fuente van Ben
tem et al, 2008). The serine at relative position 39 was indeed
phosphorylated by CPK3, which activated pPLA-IIy and pPLA-
Ile enzymatic activity (Rietz et al., 2010). The conserved serines
at position 29 (Figure 4) in group II enzymes are followed by
two acidic glutamates, which means that this site can be phos-
phorylated by the acidophilic casein kinase2 (de la Fuente van
Bentem et al,, 2008). In group 11 enzymes, the surrounding of
conserved serines/threonines is quite different. The preference
for basic amino acids is much less pronounced (relative posi-
tion 17 and 43) and, conspicuously, proline is associated with
the serine at position 43 (Figure 4). Further upstream, a con-
served serine is present at relative position 6 in Figure 4 in all
10 sequences which, however, does not show any known fea-
tures of substrate peptides of kinases. Thus, multiple pathways
of activation by phosphorylation could be operating on pPLA
enzymes.

Therefore, we integrated both CPK3 and CK2 into the model
upstream of pPLA (Figure 2). CK2 is not known to be acti-
vated by calcium or second messengers (Cozza et al, 2010;
Montenarh, 2010). The k2 dexamethasone-induced antisense
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s | 10 20 30 40 50 60 REL. POSITION

I I | | | I |
811 NVERL LPFLN DEKWCDNLKPRFMNGKLEN RVE = P°LGWRRNVLIMEACOH FD GR pPLA-I
360 RVNLD GCMNENAYE NEHALIKLAGIL KEKKIRDIR PHAKAPIRI pPLA-lla
352 RMNLD' Y YEPIPK VNNDOELKRFAKIL DEKKLRN K FK MIDD ‘N pPLA-IIB
355 RVNLE GHYQPI ENV NEEALKRFAKVL EERKLRE R PKLKI pPLA-lly
360 OMNID G YEPAAENINNDEQLKRFAKIL EERKLRRKR DEMTED “IG QEIK pPLA-II&
360 CMNID | GVYEFVAENI NDEQLKRYAKIL DERKLRRLR DTMIKD “NE QEIK pPLA-lle
422 QOKMAE VLFGGKKINEE NYEKLDWLAGELVLEHORR CRIAP VAFK( GDRRVD(O(Q IFKDI pPLA-llla
418 OKNVE VLFGGKRIDE(Q NFEKLDWLAGELVLEHORRN RIAP VAFKO VHR ADOK' ~DEDI pPLA-IIIB
477 ONNVE VLFGSKRIGEM N EKIEWFA ELVIEOQCORR VRA PV LEKCAV K NRMAINA'L'LI KD pPLA-lly
431 ERGVE AFPFGVKRILTE NGERIEGFVCORLVA ~GK = LPP PC KE AVNFPLADGR pPLA-I11&

FIGURE 4 | Potential phosphorylation sites in the C-termini of pPLA
enzymes. Sequences are aligned to highlight maximize homaology. The
number at the beginning of sequences indicates the position of the first amino
acid shown within this sequence. The scale on top is used to refer to positions
of potential phosphorylation sites. Some N-termini are at the right are
deleted. The color code is black for aliphatic or lipophilic amino acids, green for
hydrophilic amino acids, red for acidic amino acids, and blue for basic amino

acids. Serines and threonines are in yellow. Sites with obvious homologous

serines/threcnines are underlined. Phosphorylation sites for basophilic COKs

are K/R-x2-pS-h-DVE, for SnF1-related kinase K/R-x2-K/R-x2-pS, for the

acidophilic CK2 it is pS-D/E-D/E-D/E (de |a Fuente van Bentem et al,, 2008).

Phosphaorylation at relative position 40 was shown with CPK3 in pPLAly,

g_b-llz. and pPLA-IIS and phosphorylation activated pPLA-lly and pPLA e
letz et al, 2010}, Other phosphorylation sites are hypothetical.

plants have a pleiotropic auxin phenotype (Marques-Bueno et al.,
2011). However, one should keep in mind that other targets for
CK2 could exist, e.g., PDK1 phosphorylating PINOID, explain-
ing a pleiotropic auxin phenotype. Therefore, CK2 is also placed
upstream of PDK1 into a different context in Figure 2.

The single group I enzyme, pPLA-1, is the evolutionarily oldest
in the group and does not possess the suggested phosphory-
lation sites as highlighted for the other sequences (Figure 4).
In the N-terminal non-enzymatic domain of this isoform, we
found a region homeologous to binding sites of small G pro-
teins and also homologous to parts of importin o (unpublished).
Interestingly, the knockouts of this gene have agravitropic and
aphototropic hypocotyls and many early auxin-induced genes
were not up-regulated by 10puM auxin after 30min in ppla-
I knockouts and the overall phenotype of abpl/4 and ppla-I
knockouts are quite similar (Y. Effendi, K. Raddatz, S. Rietz, C.
Labusch, M. Wimalasekera, M. Zeidler, and G.EE. Scherer, in
preparation). Small G proteins have their place in auxin sig-
nal transduction (Tao et al, 2002, 2005; Wu et al., 2011) and,
more recently, have been associated with ABP1 as the relevant
receptor (Xu et al, 2010). We hypothesize that ABP1 could be
functionally linked to pPLA-I via small G protein(s) (Figures 2
and 4).

pPLA HYDROLY SIS PRODUCTS, FREE FATTY ACIDS AND LYSOLIPIDS
PARTICIPATING IN AUXIN SIGNALING
The hydrolysis products of phospholipases are FFAs and lysophos-
pholipids. Either they themselves or their derivatives should have
a second messenger function. They are postulated to carry out
functions downstream from pPLA in auxin signal transduction.
Metabolites generated by sPLA; enzymes must be viewed as
equivalent provided they are identical and present in identical
compartments.

Accumulation of lysolipids as a response to auxin tr ent
could only be observed at very high auxin concentration (Scherer
and André, 1989; Scherer, 1995; Paulet al., 1998), so that lysolipids

seem not to be potential second messengers for physiological
concentrations of auxin as a signal. Reacylation of lysolipid is quite
active (Schwartze and Roos, 2008), which may explain why LPC
accumulation is found only at high auxin concentrations. That
PLA hydrolysis is followed by rapid conversion, e.g., to acyl-CoA
of FFA or reacylation of lysolipids ( Larsson et al,, 2007; Schwartze
and Roos, 2008), may be a necessary consequence because both
FFA and lysolipids could be membrane-perturbing substances at
higher concentrations. Reacylation also prevents an overshoot-
ing response to the signal. If the pPLA isoforms preferentially
hydrolyze lipids having a specific fatty acid composition (possi-
bly determined also by the headgroup), it is not an average set
of FFA which is liberated, but a selected mixture of FEAs. This
could be one possibility to provide unique functions to each pPLA
isoform.

DOWNSTREAM EFFECTORS OF FFA AND LYSOLIPIDS COULD BE
LIPID-ACTIVATED OR CALCIUM-ACTIVATED PROTEIN KINASES

In earlier work, lipid regulation of protein kinase and pro-
tein phosphatase was investigated. Knockout mutants or other
mutants were generally not available before about 2000, so
molecular identification of the kinases and phosphatases was
not reported in this early work (reviewed in Scherer, 1996;
Scherer, 2010). A calcium-dependent CPK activity was reported
to be activated by fatty acids, but only in the absence of cal-
cium (Klucis and Polya, 1987; Lucantoni and Polya, 1987). In
as much as AGC kinases have homology to the animal lipid-
activated protein kinase C one might even speculate that AGC
kinases cold be activated by lipids binding to their hydropho-
bic pocket (Frodin et al,, 2002; Bogre et al., 2003). We showed
that lysolipids phosphorylate specific proteins in isolated mem-
brane fractions (Martiny-Baron and Scherer, 1989), but lipid
specificity was limited (Scherer et al,, 1993), and the relevant
kinases could not be identified. In summary, lipid-activated
protein kinase(s) are an eagerly awaited link in plant signal
transduction.

www.frontiersin.org

April 2012 |Volume 3 | Article 56 |7




Schereret al.

Fhospholipases and auxin signaling

CONCLUSION AND OUTLOOK

The postulate of a regulatory triad, ABP1, TIR1, and PIN pro-
teins (or auxin transport in general, perhaps also catalyzed by
other auxin transporters, respectively), is the novel aspect of our
model. This provides pPLAs and PLD a place in auxin signal
transduction and several more seemingly disparate topics in auxin
signal transduction can be combined into one model. Regulation
of auxin transport is initiated and conducted by cytosol-based
enzymatic post-translational regulatory reactions. Transcriptional
regulation — initiated by TIR1 — of early auxin-induced genes is
dependent on auxin concentration changes. This makes auxin-
induced gene regulation a third “module” in signal transduction
besides the “Ca®*/PLD model” and the “pPLA module.” Whether,
alternatively, there exists a regulatory pathway from ABP1 more
directly to the nucleus remains open. We envisage regulation of
plasma membrane-located PIN proteins as important in regu-
lating cytosolic auxin concentration (Scherer, 2011). PIN pro-
teins are regulated by endocytosis/exocytosis balances which, in
turn, are regulated by PINOID -catalyzed protein phosphorylation
(Kleine-Vehn and Friml, 2008; Huang et al., 2010).

The potential targets of lysolipids and fatty acids are summa-
rized in Figure 5. The lack of a precise function of fatty acids and
lysolipids in auxin signaling is a tremendous challenge in auxin
lipid signaling to be resolved in future research. CPK activation by
fatty acids is one possibility, as it could lead to phosphorylation

lysophospholipids fatty acids

//\//‘\

long chain

CPK \Gak, fatty acids ' PLO
rescylutlonl
defense membrana remodeling,
PPLA? vesicle trrnspon PINs pPLA? PINs

PINs

FIGURE 5 | Potential downstream effectors of pPLA or sPLA,
metabolites. Explanations are in the text.

of critical proteins. The second possibility is that desaturated fatty
acids activate PLD§ (Wang and Wang, 2001) and generate PA to
activate PDK1 and, eventually, PINOID (Zegzoutiet al.,2006). The
third hypothesis would be thatlipidic messengers reach the nucleus
and influence transcription within 10 min (Figure 4), which is a
remote possibility, though its simplicity makes it rather attractive.
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