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Simulation of Mach Zehnder Interleaver Based
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Abstract—Optical device based on Mach Zehnder
Interferometer (MZI) is usually used as the optical switching,
modulator and many applications in telecommunication networks.
This paper discuss the Temperature Effect of Wavelength
Division Multiplexing (WDM) Interleaver by using single and
cascaded MZI. The Sellmeier equation is used to calculate the
refractive index changing caused by the temperature changing.
The output power of MZI is obtained by using matrix equation.
The characteristic of output power varied with several
temperatures between 28 and 300 degree Celsius. The wavelength
used in this simulation is in L-Band region which is about 1570-
1610nm. Temperature changing cause the changing of refractive
index of material. The temperature changing leads to the shifting
of wavelength channel which describe the characteristic of thermo
optic effect on single and cascaded MZI.

Keywords—single and cascaded Mach Zehnder
Interferometer; Thermo-optic effect; Sellmeier Equation; transfer
matrix method; wavelength shift.

1. INTRODUCTION

Dense Wavelength Division Multiplexing (DWDM) is one
of critical technology to enabling the capacity expansion of
fiber optic which can exponentially increase the bandwidth of
optical communication. One of optical device that can be
classified as optical wavelength circuit for WDM
communication is the Mach Zehnder Interferometer (MZI).
The MZI can be designed as optical passive component such
as switches[1], interleaver[2][3], add-drop filters[4], modulator
and demodulator[5] etc.

One popular technological issue is related with the capability
to perform optical modulation and one of the interesting way to
modulate the refractive index in silica waveguide is by using
the thermo-optic effect. This effect is allowing low
transmission loss, low cost, high stability, low power
consumption, and very large scale of integration[6].

The thermo-optic effect on Cascaded Mach Zehnder
Interleaver is explained by using sellmeier coefficient to obtain
the changing of refractive index of silica which will discussed
in part II, and the matrix equation is needed to calculate the
output power of MZI and Comparation result of the thermo-
optic effect on single and cascaded MZI is the important part to
be discussed.

269 978-1-4799-1183-7/13/$31.00 ©2013IEEE

II. TEMPERATURE EFFECT IN REFRACTIVE INDEX OF SILICA

Silica waveguides is one of the material that usually used in
optical device because this material has several advantages,
including: low propagation loss, low coupling loss and
reflection, excellent physical and chemical stability, low cost
and large scale and also it is easy to control the phase by using
thermo-optic effect.

The thermo-optic effect is a phenomenon by which the
refractive index of a substance changes with temperature [9]. In
silica glass, this effect is characterized by an increase in the
refractive index as the temperature rises.

The sellmeier equation is an equation to characterize the
heating effect in material. The sellmeier coefficients at any
temperature 7 are computed from the room temperature and the
thermo optic-coefficient (dn/dT) of material, where the thermo-
optic coefficient for silica is 10°(°C™") [7]. The new effective
refractive index due to temperature can be calculated by using
the equation below[7].

nr=ng+ (T — R) (dn/dT) (1)

By using Eq.(1) the relation of refractive index as a function
of temperature can be simulated in Fig.1. The refractive index
is increased linearly with the increasing of temperature. It is
because the rising temperature cause the electrons of material
move faster, so that the refractive index of material is
increased.

1.467

1.466

1.465

1.464 -

1.463 -

Effective Refractive Index

1.462 T r

0 100 200 300
Temperature (°C)

400 500

Fig 1. Effective refractive index as a function of temperature
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III. MACH ZEHNDER INTERLEAVER

L+AL

Portl 3dB- 3dB- Port3
Ein, Coupler Coupler Eout;

Port2 - - Port4
Ein, L

Phase Shift Eout,
(a)
3 Lea 0B L2AL - 34p
Portl Coupler Coupler Coupler Port3
Ein; Eout,
[ T 1
Port2 Port4
Ein, L L Eout,
Phase Shift Phase Shift
(b)

Fig. 2. MZI Structure (a) Single MZI, (b) Cascaded MZI

The MZI modulator has been extensively investigated and
reported in the literature since 1980’s as a potential electro-
optic modulator for high digital bit-rate and RF transmission
over optical fiber communication systems[8].

A. Single Mach Zehnder Interferometer(MZI)

The single MZI structure is consist of two 3dB silica
directional coupler connected by two guide arms. The first
coupler has function as a splitter and the second coupler as a
combiner.

The transmission characteristic of MZI can be described
using matrix method. The propagation matrix My, 1S
described by [9]:

cosO jsin0

Meoupter= [isin 6 cos6

Where 6=Kd and K is coupling coefficient and d is coupling
length, since the 3dB couplers MZI divide the power in equal
rate, therefore 2Kd=r /4.

In the central region the signals which entering the arms is
coming from the same light source, the output from this two
guides have a phase differenceA¢, the propagation matrix M,g
for the phase shifter is:

B ej/)’AL 0
MAD7|: 0 e_jﬂAL:l

2

3

p=2m.ng/h is the propagation constant, n.r is effective
refractive index dan AL is the arm’s length difference. The
relation between the output optical fields Eout; and Eout, with
the input fields Ein; and Ein, is:

Euut,l] :M[Ein,l] (4)
E out,2 E in,2
Where: M=M couplerl 'MA O "M, coupler?2 (5)

The propagation power of MZI is shown in Fig.3, and the
parameters used in this calculation are: n;=1.464, n,=1.458 (n,,
n, are the refractive index material in core and cladding,

respectively), waveguide core width A=7um, A=1.570pum-

1.6pm.
0

Power (dB)

7\|
FSR '

1570 1575 1580 1585 1590
Wavelength (nm)

Pout] ===== Pout 2
Fig. 3 Spectral response of single MZI

1595 1600

Fig. 3 shows that the MZI is a scalable device. This means
that its spectral properties are periodic and these periodicities is
called Free Spectral Range (FSR) [2]. This simulation shows
the value of FSR is about 8,2 nm with the channel isolation
power is less than -50dB in all wavelength range and the
channel spacing between portl and port2 is 4,08 nm.

B. Two-Stage Cascaded Mach Zehnder Interferometer

The following discussion observes the characteristic of Two-
stage Cascaded Mach Zehnder Interferometer which consist of
three 3-dB couplers and two phase shifter where AL,=2AL,,
The Cascaded MZI shown in Fig.2 (b) has a spectral response
with a wider bandwidth than a single MZI [11].

Using the same method derivation in Eqgs.(2) to (5), The
spectral response of cascaded MZI is simulated using the
following parameters : n;=1.464, n,=1.458 (refractive index in
core and cladding), A4,=1575nm (central wavelength), A= 7um
(core width), AL=103.4um (arm’s length different) and L-Band
wavelength range (1575-1600nm).

The spectral response of cascaded MZI is shown in Fig.4.
The isolation power, crosstalk power, and FSR value from
Fig.4 is summarized in Table 1.

Power (dB)

1570 1575 1580 1585 1590 1595 1600
Wavelength (nm)
Pout] ====- Pout 2

270
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Fig. 4. Spectral response of cascaded MZI

TABLEI
CHARACTERISTIC OF CASCADED MACH ZEHNDER INTERFEROMETER
NO Result Value
1 Isolation Power -55dB
2 Crosstalk -30dB
3. | Channel Spacing 0,0082um
4 Space between Portl and Port2 4,13nm

From simulation in Fig. 3 and 4, and Tablel shows the
channel spacing of single and cascaded MZI is matching to the
channel spacing of 100GHz L-Band ITU grid DWDM
specification which is possible to all WDM channel.

IV. THERMO-OPTIC EFFECT ON MACH ZEHNDER
INTERLEAVER

By using sellmeier equation, the changed of effective
refractive index due to temperature had been explained in
Fig.1. Since temperature is affecting to refractive index, then
the propagation constants £ is also depend on temperature. It is
mean that the transmission power of MZI is influenced by the
temperature change.

A. Temperature Effect on Single MZI

The spectral response of single MZI is shown in Fig.5, The
parameters used in this simulation are: n,=1.464, n,=1.458,
A=1570nm-1600nm, /# = 7um and AL = 103.4pm.

The spectral responses are simulated in several temperatures
with AT=100°C. The characteristic of single MZI which is
shown in Fig.5 are summarized in Table 2.

Power (dB)

1570 1575 1580 1585 1590 1595 1600
Wavelength (nm)
T=27 = = = T=127 ===== T=227 ceeeeeeees T=327

Fig. 5 Spectral response of single MZI in several temperature

271

TABLE 2
CHARACTERISTIC OF SINGLE MACH ZEHNDER INTERFEROMETER IN SEVERAL
TEMPERATURE
No Result Tr T=127 | T,=227 | T5=327
1. | Power <-55dB | <-55dB | <-55dB | <-55dB
FSR 8,2nm | 8,2nm 8,2nm 8,2nm
Wavelength 1,08nm | 2,15nm | 3,23nm
Shift (AL)

B. Temperature Effect on Cascaded MZI

-20
-30

-40

Power (dB)

-50

-60

1570 1575 1580 1585 1590

Wavelength (nm)

1595 1600

----- T=227 - — — T=327

Fig.6 Spectral response of cascaded MZI in several temperature

Fig.6 shows the spectral response of cascaded MZI in
temperature T=27°C, 127, 227°C, 327°C. For simplicity, the
temperature is notated as Ty, T}, T,, and T; respectively. The
result of Fig.6 are summarized in Table 3.

A. Wavelength Shifting caused by Temperature Changing

Figs. 5, 6 and Tables 2, 3 shows that the heating in single and
cascaded MZI is affecting to the wavelength shift. Simulation
result from Table 2 and Table 3 shows that the wavelength
shift in single and cascaded MZI has the same value. The
relation of wavelength shift as a function of temperature
changing is shown in Fig.7.

TABLE 3
CHARACTERISTIC OF CASCADED MACH ZEHNDER INTERFEROMETER IN
SEVERAL TEMPERATURE
No Result TR T1 T2 T3
1. [[solation Power |-55dB | -55dB | -55dB | -55dB
2. [Crosstalk -30dB | -30dB | -30dB | -30dB
3. (Channel 8,2nm | 8,2nm | §,2nm | §,2nm
Spacing/FSR
4. Wavelength 1,08nm| 2,15nm |3,23nm
Shift (AL)
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Fig. 7 Wavelength shift as a Function of Temperature

Fig.7 shows that the higher temperature produce the wider
wavelength shifting. To describe the relation between
wavelength shift and temperature changing, we use brute forces
to fit a linear equation into A shifting data caused by the
temperature effects, which results in the following equation:

Ar = Ag + [1.08(T — Tx)](1075) (6)

Where Az and Ay are wavelength at room, and 7T is
temperature, respectively. Wavelength shift (AL) is A1=Az-Ar
(um), T and Ty are temperature at room and T (°C) and 1.08 x
107 is constant. In designing an interleaver based thermo-optic,
this equation can be used to immediately find out how many
degrees the temperature should be heated to obtain a particular
wavelength shift.

V. CONCLUSION

From simulation and discussion it can be concluded that the
heating effect on single and cascaded MZI cause the

wavelength shift. The value of wavelength shift due to
temperature can be calculated by applying Eq.(6). This
equation can be used as a basis for designing the MZI based
thermo-optic, to obtain the degrees of temperature should be
heated to produce a certain wavelength shift.
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