by Ary Syahriar

Submission date: 27-Nov-2020 08:30AM (UTC+0000)

Submission ID: 1458015640

File name: a44-AMR_01_Garinto.pdf (1.16M)

Word count: 2772

Character count: 15196

Mechatronics Department
 Politeknik Manufaktur Astra
 Swiss German University

Jakarta Indonesia 7 dodi.garinto@polman.astra.ac.id Ary Syahriar

1) Electrical Engineering Department
University al Azhar Indonesia
2) Mechanical Engineering
Swiss German University
Jakarta Indonesia

6 Harki Apri Yanto Mechatronics Department LP3T Politeknik Manufaktur Astra Jakarta, Indonesia harkiapri.yanto@polman.astra.ac.id

ABSTRACT

This paper presents a new circuit of op-amp based LC oscillator design for wireless communications. This LC oscillator can be classified as a harmonic oscillator. Unlike Hartley, Colpitts and Clapp oscillators, the resonant tank circuit of the proposed opamp based LC oscillator is composed of only two components single-inductor and single-capacitor, in parallel co 2 ection. Also, the LC oscillator does not use resistor components. The aim of this paper is to provide a low cost solution for sinusoidal oscillator design, particularly in low power mobile applications, where the power amplifier stage can be eliminated if the RF oscillator has enough output current and output voltage capabilities to supply the antenna load. On the other hand, the digital modulator is also integrated with the RF oscillator. The proposed op-amp based LC oscillator is analyzed and discussed using PSPICE simulation results. To verify the concept, experimental results are given. It can be observed that the simulation results are in line with the experimental results.

CCS CONCEPTS

 Hardware~Very large scale integration design~Analog and mixed-signal circuits~Analog and mixed-signal circuit synthesis

KEYWORDS

LC sinusoidal oscillator, Hartley oscillator, Colpitts oscillator, Clapp oscillator, Op-amp based LC oscillator

ACM Reference format:

Dodi Garinto, Ary Syahriar and Harki Apriyanto. 2020. Op-Amp Based LC Oscillator with 5 inimum Components for Wireless Communications. In Proceedings of International Conference on Engineering and Information Technology for S 1 inable Industry (ICONETSI 2020), September 28 - 29, 2020, Tangerang, Indonesia. ACM, New York, NY, USA, 6 pages.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions@acm.org.

CONETSI, September 28–29, 2020, Tangerang, Indonesia
2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8771-2/20/09...\$15.00
https://doi.org/10.1145/3429789.3429834

1 Introduction

In the Circuits and Systems society, sinusoidal oscillators are a popular research domain. It is interesting because many applications, such as wireless communication, biomedical, geophysical, control system, measurement, instrumentations, metal detector and dc-ac power converters require a sinusoidal oscillator circuit. In wireless communication applications, a sinusoidal oscillator is the RF source that can be modulated by digital input signal and amplified by power amplifier so that the digital information can be transmitted by antenna to the air. Generally, sinusoidal oscillators are produced using transistorbased circuits with additional LC components. It is also can be generated by op amp and LC circuits [1] [2]. Although many papers and journals discuss the sinusoidal oscillators [1] [2] [3] [4] [8], this paper only discusses the research gap on LC oscillators. Specifically, this paper is focused on op-amp based LC oscillator. In principle, according to the Barkhausen criterion, in order to achieve oscillation, the loop gain must have a level of at least unity [5]. Today's wellknown LC oscillators, such as Hartley, Colpitts and Clapp Oscillators are commonly used in the frequency range from som4 hundred kilo-Hertz to several hundred Mega-Hert 4 Hartley Oscillator is a type of LC oscillator which was invented by American engineer Ralph Hartley in 1915. The tank circuit of Hartley oscillator consists of three components - two inductors and single capacitor, as shown in Fig. 1(a). Three years later, in 1918, American engineer Edwin H. Colpitts proposes the opposite structure of Hartley Oscillator to improve the sinusoidal waveform and to increase the stability at high frequencies. The tank circuit of Colpitts oscillator also consists of three components - two capacitors and single inductor, as illustrated in Fig. 1 (b). To change the oscillation frequency, the value of inductance and capacitance of both Hartley and Colpitts oscillators can be tuned. For a long time, thirty years later, Colpitts oscillator is modified by James Kilton Clapp in 1948 using additional capacitance in series with inductor. The resonant LC ICONETSI 2020, September 28-29, Tangerang, Banten, Indonesia

tank circuit of Clapp oscillator consists of four components – three-capacitors and single-inductor to meet the requirement regarding variable frequency oscillator, as depicted in Fig. 1 (c). However, it can be perceived that Hartley, Colpitts and Clapp oscillators, also many patents and papers that concerned on opamp based LC oscillator circuit design utilize relatively excessive components [1] – [14].

1.1 Proposed LC Oscillator Circuit

In this paper, a novel LC oscillator using single op-amp and single LC circuit is proposed. Unlike Hartley, Colpitts and Clapp oscillators, the resonant tank circuit of the proposed LC oscillator is composed of only two components – single-inductor and single-capacitor, in parallel connection, as presented in Fig. 2. Moreover, unlike Fig. 1, resistors R1 and R2 are not required by the proposed negative or positive feedback in op-amp. In principle, sinusoidal oscillator is an unstable circuit system which produce a continuous sinewave oscillation because the Barkhausen criterion is satisfied, as shown in Fig. 3, where the loop gain = 1 = unity.

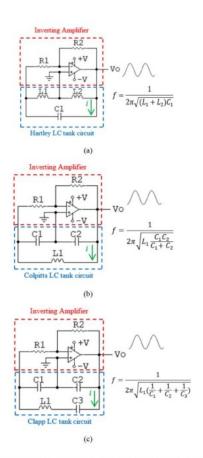


Fig. 1. Op-amp based LC sinusoidal oscillators. (a) Hartley oscillator. (b) Colpitts oscillator. (c) Clapp oscillator.

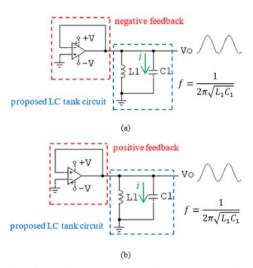


Fig. 2. Proposed op-amp based LC oscillator circuit using (a) Negative feedback and (b) Positive feedback.

The proposed LC oscillators is a type of unity loop gain. Generally, there is no input signal of the LC oscillators [5].

1.2 Simulation and Experimental Results

Regarding the negative feedback in op-amp of Fig. 2(a), the output signal is the same as the inverting input, which result in a unity loop gain. Due to the thermal noise, a small signal that exist at the output stage cause oscillation occurred at the LC tank circuit and

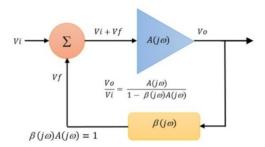


Fig. 3. The simplified feedback circuit modeling

amplified by op-amp until a steady state condition is achieved. Table I indicates the parameters of Fig. 2.

TABLE I. PARAMETERS OF THE PROPOSED LC OSCILLATOR IN FIG. 2

Component:	Parameter:
Voltage source +V, -V	5 V dc, -5 V dc
Inductor L1	22 uH
Op-amp (a), (b)	LM318, LM7171
Capacitor C1	0.1 uF
Output frequency f	107 kHz (calculated)

PSPICE simulation result confirm that, as shown in Fig. 4, the start-up and steady state conditions of sinusoidal waveform can be generated by the circuit of Fig. 2(a) using op-amp LM318. The measured sinewave frequency based on the simulation result is about 103 kHz. The amplitude of the sinusoidal waveform is about +3.3 V and -3.3V peak to peak. To increase the output frequency, the inductor L1 and capacitor C1 can be adjusted to smaller values while considering the LM318 specification. According to the experimental result, the LC oscillator of Fig. 2(a) with LM318 is also working with single supply voltage +5 V. The amplitude of sinusoidal waveform is about +2.1 V and -2.1 V peak to peak, as can be observed in Fig. 5. Actually, based on experimental result, - V and inverting input of the op-amp LM318 needs to be connected and disconnected in a short of time to make this single supply producing continuous sinusoidal waveform.

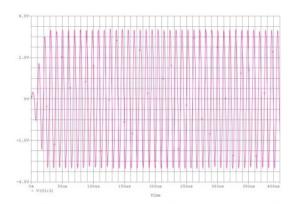


Fig. 4. (a) Start-up condition of sinusoidal waveform that generated by LC oscillator of Fig. 2(a) using op-amp LM318

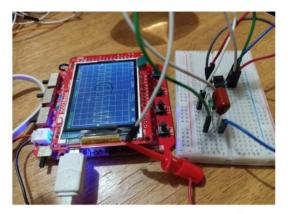


Fig. 5. Experimental result of the LC oscillator in Fig. 2(a) with LM318 and single supply voltage +5V generating continuous sinusoidal waveform

In case of positive feedback in op-amp of Fig. 2(b), the output signal is connected directly to the non-inverting input without supplementary resistors. This LC oscillator also fulfils the

ICONETSI 2020, September 28-29, Tangerang, Banten, Indonesia

Barkhausen criterion which result in a unity loop gain. Fig. 6(a) describes the PSPICE simulation results of the proposed LC oscillator using LM7171 and Fig. 6(b) shows the Fourier spectrum. Unlike LM318, the op-amp LM7171 can not produce sinusoidal output waveform using negative feedback. Based on experimental result, the LC oscillator with op-amp LM7171 only produces a small signal with amplitude of less than +1 V and -1 V peak to peak if it is designed in a negative feedback configuration. On the other hand, the LM7171 doesn't work with single supply +5 V. The proposed LC oscillator based on op-amp LM7171 of Fig. 2(b) is straightforwardly verified by experimental result, as shown in Fig. 7. It can be observed that the sinusoidal amplitude can achieve around +4 V and -4 V peak to peak.

Fig. 6. (a) Start-up and steady state transient response of the proposed LC oscillator of Fig. 2(b) using LM7171. (b) The Fourier

Fig. 8(a) illustrates today's wireless communication transmitter in a simple block diagram and Fig. 8(b) shows the proposed wireless communication transmitter block diagram. In wireless applications, it is necessary that the op-amp based LC oscillator has enough output current and output voltage capabilities to connected directly to the antenna load so that the digital

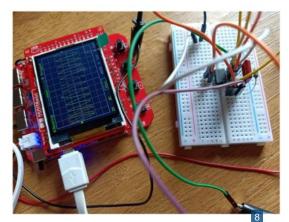


Fig. 7. Experimental result of the proposed op-amp based LC oscillator in Fig. 2(b) using LM7171 and the supply voltage of +5 V and -5 V

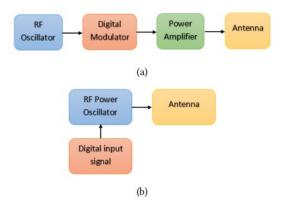


Fig. 8. (a) Today's wireless communication transmitter in a simple block diagram. (b) Proposed wireless communication transmitter block diagram

information can be processed efficiently in the transmitter stage. In other words, the power amplifier stage can be eliminated to reduce the complexity and to increase the overall efficiency of the transmitter system. Fig. 9 demonstrates the proposed LC oscillator with additional switch S1 to perform a digital modulation technique using on off keying modulation. In principle, switch S1 is driven by digital input signal to modulate the RF source or sinusoidal signal that generated by this circuit. As shown in Fig. 9(b), a binary 1 is characterized by the present of RF signal and a binary 0 is characterized by no signal. The LC oscillator of Fig. 9(a) uses LM318 with L1 = 10 uH and C1 = 0.01 uF. The supply voltage is +9V and -9V.

Fig. 10(a) describes the proposed op-amp based LC oscillator with Frequency Shift Keying (FSK) modulation and additional antenna load 50 Ω . Fig 10(b) shows the simulation results when the switch S1 is turned ON and turned OFF by digital input signal. The parameters of Fig. 10(a) are L1 = 2.2 uH, C1 = 0.01 uF, C2 = 0.1 uF and the op-amp is LM7171. The supply voltages are +9 V and -9 V.

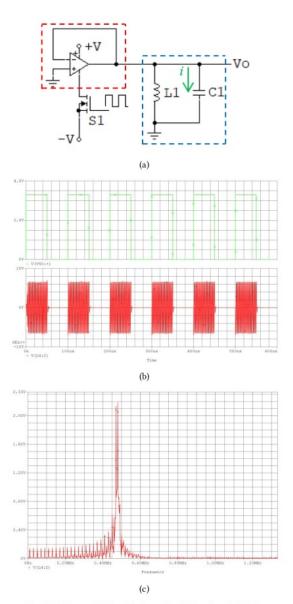


Fig. 9. (a) Proposed LC oscillator with additional switch S1 to performs on off keying modulation for wireless communication applications. (b) Simulation result confirms that on off keying modulation can be achieved. (c). The Fourier spectrum.

The frequency modulation is illustrated by the Fourier spectrum in Fi 10 (c). To increase the output RF power of the LC oscillator, high output current and output voltage capabilities of the op amp is required so that the power amplifier stage as shown in Fig. 8(a) can be pruned. Further integration using IC layout design is required to produce a compact wireless power transmitter system.

Nevertheless, the frequency shift keying modulation that shaped by C2 and S1 configuration introduces switching loss when the switch is turned ON. This switching loss can be mitigated using fast rise and fall times of the S1. To achieve a very high sinusoidal frequency, a better op-amp performance is required. Op-amp THS3095 has a better performance compared to op-amps LM318 and LM7171. Fig. 11(a) shows the proposed op-amp based LC oscillator using THS3095 with bidirectional-switch on off keying

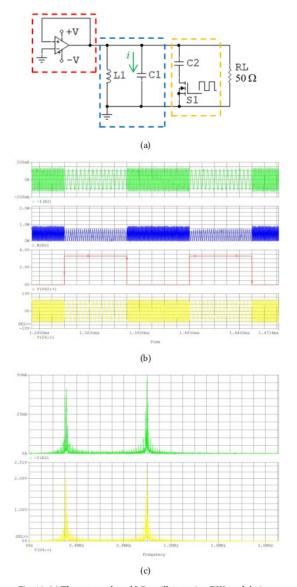


Fig. 10. (a) The op-amp based LC oscillator using FSK modulation and antenna load 50 Ω . (b) Simulated voltage and current level at RL load using LM7171. (c) The frequency spectrum.

ICONETSI 2020, September 28-29, Tangerang, Banten, Indonesia

modulation technique. Fig. 11(b) depicts the startup and steady state conditions in relation to the RF power at antenna load 50 Ω . Fig. 11(c) illustrates the simulated on off keying mechanism regarding the voltage and power levels at RL 50 Ω . When the

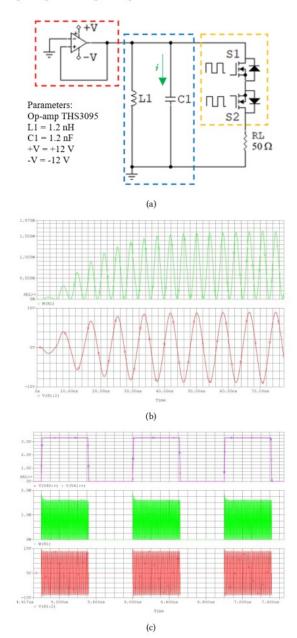


Fig. 11. (a) Proposed op amp based LC oscillator with bidirectional-switch on off keying modulation technique. (b) Start up and steady state conditions. (c) Simulated voltage and power levels at RL 50 Ω .

bidirectional-switch S1 and S2 are turned OFF at the same time, the op-amp produces RF source in light load condition. When the bidirectional-switch S1 and S2 are turned ON at the same time by digital input signal, the RF power is delivered to the antenna load and transmitted to the air to symbolize a binary 1. Fig. 12 shows the frequency spectrum with low harmonic contents in relation to the current and voltage amplitudes at the antenna load 50 Ω . It means a better sinusoidal waveform of the proposed LC oscillator circuit based on op-amp THS3095 with 120 MHz frequency is created, as can be seen in Fig. 11(b).

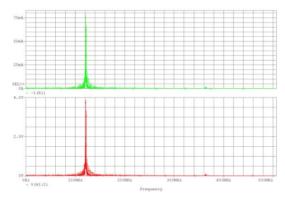


Fig. 12. The Fourier spectrum shows the RF frequency with low harmonic contents in relation to the current and voltage amplitudes.

1.3 Conclusion

The op-amp based LC oscillator circuit with single op-amp, singleinductor and single-capacitor was presented in this paper. Various op-amp performances were discussed and compared. The concept of RF power oscillator without power amplifier stage for wireless communication transmitter was introduced to shorten the chain of RF power processing and to increase the overall efficiency of the transmitter system. Also, the proposed LC oscillator with integrated on off keying and frequency shift keying modulations were presented and analyzed. The PSPICE simulation results confirm that the proposed op-amp based LC oscillator can produce sinusoidal waveform for wireless communications. The experimental results using op-amp LM318 and LM7171 were also given and in-line with the simulation results. In future works, transistor-based LC oscillator with the same unity loop gain will be investigated. It is interesting to demonstrate this LC oscillator using a better op-amp performance to achieve a microwave frequency with higher output current and output voltage capabilities so that it can be connected directly to the antenna load without a power amplifier stage.

ACKNOWLEDGMENTS

This work was supported by PT. Astra International Tbk. and Politeknik Manufaktur Astra.

REFERENCES

- Marian K. Kazimierczuk, Dakshina Murthy-Bellur, "Synthesis of LC sinusoidal oscillators," International Journal of Electrical Engineering Education, October 24, 2012.
- [2] Ron Mancini, "Design of op amp sine wave oscillators," Analog Applications Journal, Texas Instruments, August 2000.
- [3] Raj Senani, "New Types of Sinewave Oscillators," IEEE Transactions on Instrumentation and Measurement, vol. IM-34, no. 3, pp. 461-463, 3rd September 1985.
- [4] D. R. Utomo, "Another approach to design a sinusoidal oscillator: Ensuring the oscillation stability," 2013 International Conference on Information Technology and Electrical Engineering (ICITEE), Yogyakarta, 2013, pp. 426-431.
- [5] Guillermo Gonzalez, "Foundations of Oscillator Circuit Design," 2007, Artech House, Inc. 685 Canton Street, Norwood, Ma 02062.
- [6] Ulrich L. Rohde and Anisha M. Apte. Everything you always wanted to know about Colpitts oscillators," IEEE Microwave Magazine, pages 59–76, August 2016.
- [7] US 1624537, Colpitts, Edwin H., "Oscillation generator", published 1 February 1918, issued 12 April 1927.
- [8] J. L. Huertaz, A. Rodriguez-Vazquez and B. Perez-Verdu, "High Frequency Design of Sinusoidal Oscillators Realised with Operational Amplifiers", IEE Proc. G, Electron. Circuits & Syst., vol. 131, no. 4, pp. 1 37-140, Aug. 1984.
- [9] Lindberg, E., "Oscillators—An Approach for a Better Understanding," Proceedings of the 2003 European Conference on Circuit Theory and Design, Krakow, Poland, 2003.
- [10] Lindberg, E. (2010). The Barkhausen Criterion (Observation?). In Proceedings of NDES 2010 (pp. 15-18), Dresden, Germany.
- [11] R.Manicini and R.Palmer., "Sine-Wave Oscillator", Texas Instruments, Application Report SLO A060, March 2001.
- [12] "Sine Wave Generation Techniques", National Semiconductor Application Note 263, Rerelaeased May 2009.
- [13] J. R. Westra, C. J. M. Verhoeven and A. H. M. van Roermund, Oscillators and Oscillator Systems - Classification, Analysis and Synthesis, pp. 1-282, Kluwer 1999.
- [14] E. Lindberg, "Colpitts, eigenvalues and chaos", in Proceedings NDES'97 - the 5'th International Specialist Workshop on Nonlinear Dynamics of Electronic Systems, pp. 262-267, Moscow, June 1997.

ORIGINALITY REPORT

9%

6%

8%

5%

SIMILARITY INDEX

INTERNET SOURCES

PUBLICATIONS

STUDENT PAPERS

PRIMARY SOURCES

1

arxiv.org

Internet Source

5%

Dodi Garinto, Harki Apri Yanto. "3-Phase L-Dump Converter with Single Pulse Mode for Switched Reluctance Motors", 2019 IEEE Conference on Energy Conversion (CENCON), 2019

1 %

Publication

Lei Zhang, Zongmin Wang, Tieliang Zhang, Xinmang Peng, Jinhao Wang, Hegang Hou. "An All-analogue Duty Cycle Corrector with High Accuracy, Wide Correction Range and Configurable Crossing", Proceedings of the 2017 2nd International Conference on Communication and Information Systems -

1%

Publication

ICCIS 2017, 2017

4

Submitted to Myanmar Noble College

Student Paper

1 %

6

5

Rusdianasari Rusdianasari, Yohandri Bow, Tresna Dewi, Ahmad Taqwa, Lin Prasetyani. "Effect of Sodium Chloride Solution Concentration on Hydrogen Gas Production in Water Electrolyzer Prototype", 2019 International Conference on Technologies and Policies in Electric Power & Energy, 2019

<1%

- Publication
- Tsaura Dwi Fitriani Aulia, Dwi Astharini, Ahmad Lubis, Ary Syahriar. "Performance Analysis of Fiber with Solitons Parameters and Fiber Non-Solitons Parameters using OptiSystem", 2019 6th International Conference on Instrumentation, Control, and Automation (ICA), 2019

<1%

- Publication
- 8

Fuketa, Hiroshi, Youichi Momiyama, Atsushi Okamoto, Tsuyoshi Sakata, Makoto Takamiya, and Takayasu Sakurai. "An 85-mV input, 50-µs startup fully integrated voltage multiplier with passive clock boost using on-chip transformers for energy harvesting", ESSCIRC 2014 - 40th European Solid State Circuits Conference (ESSCIRC), 2014.

<1%

Publication

Sedra, Adel. "Microelectronic Circuits 7th Edition, International Edition", Oxford University Press

<1%

Publication

Exclude quotes On Exclude matches Off

Exclude bibliography On